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HOW GRAVITY RESPONDS TO AND MODIFIES THE STRUCTURE

OF THE VACUUM IS PROBABLY THE KEY QUESTION

IN THEORETICAL PHYSICS TODAY.
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A WORD FROM THE SPONSORS

”Of general theory of relativity, you will be convinced once you have studied it.

Therefore, I am not going to defend it with a single word. ”

A.Einstein [in a letter to A.Sommerfeld, 6 Feb 1916]

”I do not think we have a completely satisfactory relativistic quantum mechanical

theory; even one, that does not agree with nature but at least agrees with logic.

Therefore, I think the renormalisation theory is simply a way to sweep the difficulties

of the divergences under the rug.”

R.P.Feynman [1965, Nobel Prize lecture]



X

YT

Non Relativistic Quantum Mechanics

Space (X or Y or Z)

In NRQM a path is [X(T ), Y (T ), Z(T )]. Paths go backward in space X, Y, Z but not in

time T
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In RQM a path is [T (s), X(s), Y (s), Z(s)] where s is the proper time. Paths go

backward in space X, Y, Z and time T !
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Major Crisis : A particle is at 3 different places at a given time !?

We need something with infinite degrees of freedom:

Field = Infinite number of Harmonic Oscillators

Particles zig−zag in time !
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the momentum     of the particle with frequency p =ω
Field = infinite number of oscillators; each oscillator labeled by

p 2+ m2
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p) particles with momentum     is the state with p
p−th oscillator in the excited state labelled by integer n.
State with n(
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n (p) = 0Lowest energy ground state for the field = no particle state with 



VACUUM DEPENDS ON THE SCALE OF PROBING

• Phonons, magnons, photons, electrons, protons, quarks ..... Each can arise as an

excited state of a suitably defined system of oscillators.

• Example: Lattice vibrations when quantized will give rise to phonons. The

ground state is that of zero phonons.
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• One Oscillator: L = 1
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• ..... is the same as a field

φ(t, x) =

∫

d3k qk(t) exp ik.x

• Ground state has quantum fluctuations in q, p:

ψ(q) = N exp(− q2

2∆2
); ∆2 =< q2 >=

~

2mω

• Ground state of electromagnetic field:

P ∝ exp

[

− 1

16π3~c

∫
E(x) · E(y)

|x − y|2
d3xd3y

]

Key Point: You can never make the fluctuations go away.
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• A beautiful example of power of vacuum. Not fully understood yet in spite of

hundreds of papers!

• Two conducting plates, kept in vacuum separated by a attracts each other with a

force
F

A
= − π2

~c

240a4
.

The energy of the configuration is

E

A
= − π2

~c

720a3
; F = −dE

da
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SOME OF THESE MODES VIOLATE BOUNDARY CONDITIONS AT PLATES
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hundreds of papers!
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force
F

A
= − π2

~c

240a4
.

E

A
= − π2

~c

720a3
; F = −dE

da

• One dimensional scalar field example:

With plates : k = (2π/a)n, n = 0, 1, 2, ...

Without plates : k = (2π/a)n, 0 < n <∞

• Difference in energy:

∆E =
1

2
~

2πc

a

[
∑

n

n−
∫ ∞

0

ndn

]

= −π~c

24a

• Pattern of vacuum fluctuations change when external conditions change.
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DOES VACUUM GRAVITATE ?

abG = κ Tab

Tab Tab Tab= (M) + (vacuum)

M M



IS VACUUM DOMINATING OUR UNIVERSE ?

• Our Universe has a totally preposterous composition which no cosmologist

wanted !

• Ωtotal ≈ 1

Ωradiation ≈ 0.00005

Ωneutrinos ≈ 0.005

Ωbaryons ≈ 0.04

Ωwimp ≈ 0.31

Ωdarkenergy ≈ 0.65

• What is this Dark Energy ?



Spacetime and causal structure

A

T

X



Spacetime and causal structure

C

B

A

T

X

Newtonian physics: A can communicate with B and C.



Spacetime and causal structure

C

HORIZ
ON

B
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X

Special Relativity introduces a causal horizon; A cannot communicate with B.



Spacetime and causal structure

O1 O2 O3

HORIZ
ON

T

X

A family of observers (O1, O2, O3, ...) have a causal horizon



Example 1: Schwarzschild spacetime

Sr  
= 

2 M

r  = const > 2 M
S

HORIZ
ON

T

X

ds2 = −
(

1 − 2M

r
S

)

dt2
S

+

(

1 − 2M

r
S

)−1

dr2
S

= Q2
S
(T,X)(−dT 2 + dX2)



Example 2: De Sitter spacetime

r    = const < H
dS

−1HORIZ
ON

T

X

dS

−1

r  
  =

 H

ds2 = −
(
1 −H2r2

dS

)
dt2dS +

(
1 −Hr2

dS

)−1
dr2

dS

= Q2
dS(T,X)(−dT 2 + dX2)



Example 3: Rindler (flat!) spacetime

x  
= 

0
R

R
x  = const > 0

HORIZ
ON

T

X

ds2 = −2κx
R
dt2 + (2κx

R
)−1 dx2

R

= −dT 2 + dX2



KEY NEW FEATURE

IN COMBINING GRAVITY AND QUANTUM THEORY

VACUUM STATE IS OBSERVER DEPENDENT!
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Plane wave viewed by different observers

Warm-up: Inertial Observer

T

X

TRAJECTORY OF

INERTIAL OBSERVER

T =
τ

(1 − v2)1/2

X =
vτ

(1 − v2)1/2

φ(T,X) ≡ φ (T (τ), X(τ)) = exp−iΩ
(

1 − v

1 + v

)1/2

τ

Doppler effect: Ω′ = Ω
(
1 − v
1 + v

)1/2



Plane wave viewed by different observers

Observers with a causal horizon

T

X

HORIZ
ON

UNIFORMLY ACCELERATED

OBSERVER

T = x sinh(κτ)

X = x cosh(κτ)

x =
√

X2 − T 2

= constant

φ(T,X) = exp[−iΩ(T −X)]



Plane wave viewed by different observers

Observers with a causal horizon

T

X

HORIZ
ON

UNIFORMLY ACCELERATED

OBSERVER

T = x sinh(κτ)

X = x cosh(κτ)
x =

√

X2 − T 2

= constant

φ(τ) = φ(T (τ), X(τ)) = exp i

exponential redshift!
︷ ︸︸ ︷[

Ω

κ
e−κτ

]
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HEAT YOU UP!

• A mode φ(t, x) = exp[−iΩ(t− x)] frequency Ω will lead to

φ(τ) = exp[iΩa−1 exp(−aτ)] =

∫ ∞

0

dν[A(ν)e−iνt +B(ν)eiνt]

with

|A|2 ∝ 1

eβν − 1
; |B|2 ∝ eβν

eβν − 1
; β =

2πc

a

• Exponential redshift occurs near any horizon with a determined by surface gravity

at the horizon.

• For a black hole, a = GM/R2 at R = 2GM/c2. This gives kBT = ~c3/8πGM , the

Hawking temperature.
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• In normal units, there is still no ~ in TdS!
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• Einstein-Hilbert Lagrangian: LEH ∝ R ∼ (∂g)2 + ∂2g = Lbulk + Lsur.

• There is remarkable relation between Lbulk and Lsur:

√
−gLsur = −∂a

(

gij
∂
√−gLbulk
∂(∂agij)

)

allowing a dual description of gravity using either Lbulk or Lsur !

• We can obtain dynamics of gravity using only the surface term of

the Hilbert action.
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• Einstein’s equations arise from the demand that Atot = Asur +Amatter

should be invariant under virtual displacements of the horizon

normal to itself.

• Action is the free energy of ‘spacetime solid’; gravitational degrees

of freedom in the bulk is dual to that in the surface.

• Einstein’s equations as a thermodynamic identity:

TdS − pdV − dE = 0

temperature and entropy

from variation of Asur

work in virtual

horizon displacement

change in the

energy; from Amatter
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KEY NEW RESULT: AREA QUANTISATION

In semi-classical limit, demanding exp iAsur = exp2πin leads to area

quantization:

Area = (8πL2
P )n
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The structure of the vacuum must change due to its own gravitational force. Can

this reduce ρV to acceptable values ?

• Given LP and LH we have ρ
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= ~c/L4

H . The observed value of

dark energy density is:
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DE
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+
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L4
P

(
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LH
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+ · · ·

’vacuum renormalisation’

makes this zero (?)

observed value; can come

from fluctuations

thermal energy density of

de Sitter ρrad ∝ T 4
GH
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• The conventional approach: gab and its dynamics is the key.

– No deep principle to fix the dynamics of spacetime.

– Hilbert action has peculiar features for which there is no explanation

– Thermal properties of horizon is an “optional extra”.

• The alternative perspective: Gravity is an emergent, long wavelength,

phenomenon. Observer dependent horizon thermodynamics is central.

– Every light cone is a horizon for some family of observers.

– Physics beyond horizon is encoded in a surface term which is the entropy.

– Virtual displacements of the horizon leads to TdS = dE + pdV which is the

same as Einstein’s equations.

– Locally inertial observers ⇐⇒ Kinematics of spacetime;

Locally accelerated observers ⇐⇒ Dynamics of spacetime;

• Dual description to the conventional one; the full Hilbert action becomes the free

energy of spacetime.

• Obvious implications for quantum gravity.
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