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WHAT WILL BE THE VIEW REGARDING
GRAVITY AND SPACETIME
IN THE YEAR 2206 7
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CONDENSED MATTER PHYSICS

CLASSICAL GRAVITY =
OF SPACETIME SUBSTRUCTURE

HOW GRAVITY RESPONDS TO AND MODIFIES THE STRUCTURE
OF THE VACUUM IS PROBABLY THE KEY QUESTION

IN THEORETICAL PHYSICS TODAY.
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A WORD FROM THE SPONSORS

" Of general theory of relativity, you will be convinced once you have studied it.
T herefore, I am not going to defend it with a single word. ”

A.Einstein [in a letter to A.Sommerfeld, 6 Feb 1916]

"I do not think we have a completely satisfactory relativistic quantum mechanical
theory,; even one, that does not agree with nature but at least agrees with logic.

T herefore, I think the renormalisation theory is simply a way to sweep the difficulties
of the divergences under the rug.”

R.P.Feynman [1965, Nobel Prize lecture]



Non Relativistic Quantum Mechanics

Y
Y

Space (X or Y or Z)

In NRQM a path is [X(T),Y(T), Z(T)]. Paths go backward in space X,Y,Z but not in
time T’



Relativistic Quantum Mechanics

Proper Time

Y
Y

Time OR Space X
(TorXorYor2)

In RQM a path is [T'(s), X(s),Y (s), Z(s)|] where s is the proper time. Paths go
backward in space X,Y,Z and time T !
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Time

Particles zig—zag in time !

We need something with infinite degrees of freedom:
Field = Infinite number of Harmonic Oscillators

Space
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Time

Field = infinite number of oscillators; each oscillator labeled b
the momentum p of the particle with frequency w = /p 24m?2

Annihilation of
electron—positron

Creation of
electron—positron

Space



Time

Annihilation of
electron—positron

State with n( p) particles with momentum p is the state with
p—th oscillator in the excited state labelled by integer n.

Creation of
electron—positron

Space



Time

Annihilation of
electron—positron

Lowest energy ground state for the field = no particle state with n(p) =0

A4
Creation of
electron—positron

Space



VACUUM DEPENDS ON THE SCALE OF PROBING

e Phonons, magnons, photons, electrons, protons, quarks ..... Each can arise as an
excited state of a suitably defined system of oscillators.

e Example: Lattice vibrations when quantized will give rise to phonons. The
ground state is that of zero phonons.
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FIELD = INFINITE NUMBER OF OSCILLATORS

One Oscillator: L = 3¢ — sw?¢?

Many oscillators:L = Y, (547 — swiqi) wWith k=1,2,...N

Continuum infinity of oscillators:

L:/d3k<

..... is the same as a field

L.
54

5

2 92
— —Ww
k 9 ka)

o(t,x) = /d3k qk(t) expik.x

Ground state has quantum fluctuations in q, p:

2

$(a) = N exp(—5 )



FIELD = INFINITE NUMBER OF OSCILLATORS

One Oscillator: L = 3¢* — jw?¢’
Many oscillators:L = Y, (347 — twiq}) with k=1,2,...N

Continuum infinity of oscillators:

1 1
L= /dgk (56]12{ — 5%%%%)

o(t,x) = /d3k qx(t) expik.x

..... is the same as a field

Ground state has quantum fluctuations in q, p:

q’ ) ) h
¥(q) exp(—o 5 ); <q >

Ground state of electromagnetic field:

1 E(x) - E
1673 hc Ix —y|?

Key Point: You can never make the fluctuations go away.
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CASIMIR EFFECT: YOU CAN'T IGNORE NOTHING!

e A beautiful example of power of vacuum. Not fully understood vyet in spite of
hundreds of papers!

e [ woO conducting plates, kept in vacuum separated by a attracts each other with a

force
F m2he

A 240a*

The energy of the configuration is

FE m2he . P dE
A 720a3’ da




VACUUM STATE HAS RANDOM FIELD MODES



SOME OF THESE MODES VIOLATE BOUNDARY CONDITIONS AT PLATES




NEW VACUUM STATE IS DIFFERENT FROM THE ORIGINAL ONE!

~J ~J
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e A beautiful example of power of vacuum. Not fully understood vyet in spite of
hundreds of papers!

e [ woO conducting plates, kept in vacuum separated by a attracts each other with a
force

F w2hc

A 240a*
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e One dimensional scalar field example:

With plates : k = (27/a)n,n =0,1,2, ...
Without plates: k = (27/a)n,0 < n < o
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A beautiful example of power of vacuum. Not fully understood yet in spite of
hundreds of papers!

Two conducting plates, kept in vacuum separated by a attracts each other with a
force

F m2he

A 240at
E . m2he . P _@
A 72003’  da

One dimensional scalar field example:

With plates : k = (27/a)n,n =0,1,2, ...
Without plates: k = (27/a)n,0 < n < o

Difference in energy:
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CASIMIR EFFECT: YOU CAN'T IGNORE NOTHING!

A beautiful example of power of vacuum. Not fully understood yet in spite of
hundreds of papers!

Two conducting plates, kept in vacuum separated by a attracts each other with a
force

F w2hc

A 240a*
E . m2hc . P dE
A 720a3’  da

One dimensional scalar field example:

With plates : k = (27/a)n,n =0,1,2, ...
Without plates: k = (27/a)n,0 < n < o

Difference in energy:

1. 2 00 A
AE = —p=T€ Zn—/ ndn | — _ The
2 a 0 24a

Pattern of vacuum fluctuations change when external conditions change.
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DOES VACUUM GRAVITATE 7

Gan=kK Tap




IS VACUUM DOMINATING OUR UNIVERSE 7

e Our Universe has a totally preposterous composition which no cosmologist
wanted !

o (iotal = 1
Qradiation ~ 0.00005
{eutrinos = 0.005
Qbaryons = 0.04
Wity 79 (Uil
sl remeay oo (UGS

e What is this Dark Energy 7
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Newtonian physics: A can communicate with B and C.



Spacetime and causal structure

Special Relativity introduces a causal horizon; A cannot communicate with B.



Spacetime and causal structure

A family of observers (O, 0, O3,...) have a causal horizon



Example 1: Schwarzschild spacetime

I’SZ const>2M

 /
X

2M oM\ !
ds* = —(1— )dt§+(1— ) dr?
[rS [rS

= Q(T,X)(—dT? + dX?)



Example 2: De Sitter spacetime

ds?

= — (1= H’rjg)dt;s+ (1 — Hrgs)_l drie
= Qi(T, X)(—dT* + dX?)



Example 3: Rindler (flat!) spacetime

ds’® = —2kx,dt* + (2kx,)”" dx®
= —dT?+dX?



KEY NEW FEATURE
IN COMBINING GRAVITY AND QUANTUM THEORY

VACUUM STATE IS OBSERVER DEPENDENT!



Plane wave viewed by different observers
Warm-up: Inertial Observer

T
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= (1 — v2)1/2
_ VT
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T

A

T
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_ VT
(1 — v2)1/2

X

TRAJECTORY OF
INERTIAL OBSERVER

O(T, X) = exp[—iQT — X)]



Plane wave viewed by different observers
Warm-up: Inertial Observer

T

A

-
I'= (1 — v2)1/2
_ VT

(1 — v2)1/2

 /
X

TRAJECTORY OF
INERTIAL OBSERVER

_ o\ 172
3(T, X) = ¢ (T(7), X(7)) = exp —if2 G - U) _

D | fF Q=0 1 —o\1/2
oppler effect: O = (H_U)



Plane wave viewed by different observers
Observers with a causal horizon

T

A

T = xsinh(kT)
X = xcosh(kT)

— /X2 _ T2

= constant
> X

UNIFORMLY ACCELERATED
OBSERVER

¢(T, X) = exp[—iQ)(T — X)]



Plane wave viewed by different observers
Observers with a causal horizon

T

A

T = xsinh(kT)
X = x cosh(kT)

— /X2 _ T2

= constant
> X

UNIFORMLY ACCELERATED
OBSERVER

exponential redshift!
A\

B(7) = H(T(r), X (1)) = expi [;e
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RUNNING THROUGH THE VACUUM CAN
HEAT YOU UP!

e A mode ¢(t,z) = exp[—i€2(t — x)] frequency 2 will lead to
(1) = exp[iQa "' exp(—aT)] = /OO dv[A(v)e ™" + B(v)e™]
0

with
1 . efv . 2me

: B|? x ; = —
e —1 B e’ —1 & a

|A”
e EXxponential redshift occurs near any horizon with a determined by surface gravity

at the horizon.

e For a black hole, a = GM/R? at R =2GM/c*. This gives kgT = hc*/87GM, the
Hawking temperature.
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AN INTERPRETATION OF EINSTEIN'S EQUATIONS
Metric:
ds®> = f(r)dt* — f(r) 'dr® — r*(d6* + sin* d¢*) = f(r)dt* — f(r) ‘dr* — dL?;
Consider the case with horizon at r = a; that is, f =0 at r = a with f'(a) = B > 0.

Temperature of horizon: kg1 = hcB /4.

At r = a. Einstein’s equation gives:

411 1
C_ —Ba — —| = —47'('7—?0,2 = —47TT7T0/2
G |2 2

Multiply da to write:
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Metric:
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AN INTERPRETATION OF EINSTEIN'S EQUATIONS
Metric:

ds® = f(r)dt* — f(r) 'dr?* — r?(d6* + sin®* 0d¢?) = f(r)dt* — f(r) 'dr®* — dL?

Consider the case with horizon at r = a; that is, f =0 at r = a with f'(a) = B > 0.
Temperature of horizon: kg1 = hcB /4.
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AN INTERPRETATION OF EINSTEIN'S EQUATIONS

Metric:

ds® = f(r)dt* — f(r) 'dr* — r?(d6* + sin®* 0d¢?) = f(r)dt* — f(r) 'dr* — dL?

Consider the case with horizon at » = a; that is, f =0 at r = a with f'(a) = B > 0.

Temperature of horizon: kg1l = hcB /4.

At r = a. Einstein’s equation gives:

ct [1 1]
Z |ZBg— =
G |2 2

Multiply da to write:

47Tia® = —4nT! o’

ZCB é;d (i47m2> — lc‘lcc;la = -T'd (%a?’)
\7-‘-/ N P Y . -~ _J/ \ ~
kT dsS —dE PdV
Read off (L% = Gh/c?):
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AN INTERPRETATION OF EINSTEIN'S EQUATIONS
Metric:
ds® = f(r)dt* — f(r) 'dr?* — r?(d6* + sin®* 0d¢?) = f(r)dt* — f(r) 'dr®* — dL?
Consider the case with horizon at r = a; that is, f =0 at r = a with f'(a) = B > 0.
Temperature of horizon: kgT = hcB /4.

At r = a. Einstein’s equation gives:

ct 1 1 5 5
— |=Ba — = | = —4nT;a" = —4nT a
G |2 2

Multiply da to write:

heB & d (147ra2> — lc4da =-T'd (%a?’)

47 gh é \

kT ds —dE PdV
Read off (L% = Gh/c%):

1

S =
AL%

1A : AR\
(4ma?) = ~d. E= < ° -
4 L2 2G G

In normal units, there is still no A in T'dS'
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HOLOGRAPHIC DUALITY OF EINSTEIN GRAVITY
T.P.,gr-qc/0311036; gr-qc/0412068

e Einstein-Hilbert Lagrangian: Lgy < R ~ (09)? + 9°9 = Ly + Lsur.

e [ here is remarkable relation between Ly, and L., :

8\/ _ngulk
V _gLsur — _aa (gz )
’ a(aagij)

allowing a dual description of gravity using either Ly, OF Ly, !

e \We can obtain dynamics of gravity using only the surface term of
the Hilbert action.



GRAVITY: THE DUAL DESCRIPTION
T.P.,gr-qc/0311036; gr-qc/0412068



GRAVITY: THE DUAL DESCRIPTION
T.P.,gr-qc/0311036; gr-qc/0412068

e Einstein’'s equations arise from the demand that A;,,; = A.., + Anaiter
should be invariant under virtual displacements of the horizon
normal to itself.



GRAVITY: THE DUAL DESCRIPTION
T.P.,gr-qc/0311036; gr-qc/0412068

e Einstein’s equations arise from the demand that A = A..r + Anatier
should be invariant under virtual displacements of the horizon

normal to itself.

e Action is the free energy of ‘spacetime solid’; gravitational degrees
of freedom in the bulk is dual to that in the surface.



GRAVITY: THE DUAL DESCRIPTION
T.P.,gr-qc/0311036; gr-qc/0412068

e Einstein’s equations arise from the demand that A = A..r + Anatier
should be invariant under virtual displacements of the horizon

normal to itself.

e Action is the free energy of ‘spacetime solid’; gravitational degrees
of freedom in the bulk is dual to that in the surface.

e Einstein’'s equations as a thermodynamic identity:

TdS — pdV — dE = 0



GRAVITY: THE DUAL DESCRIPTION
T.P.,gr-qc/0311036; gr-qc/0412068

e Einstein’s equations arise from the demand that A = A..r + Anatier
should be invariant under virtual displacements of the horizon

normal to itself.

e Action is the free energy of ‘spacetime solid’; gravitational degrees
of freedom in the bulk is dual to that in the surface.

e Einstein’'s equations as a thermodynamic identity:

TdS — pdV — dE = 0

e

temperature and entropy
from variation of Ag,,




GRAVITY: THE DUAL DESCRIPTION
T.P.,gr-qc/0311036; gr-qc/0412068

e Einstein’s equations arise from the demand that A = A..r + Anatier
should be invariant under virtual displacements of the horizon

normal to itself.

e Action is the free energy of ‘spacetime solid’; gravitational degrees
of freedom in the bulk is dual to that in the surface.

e Einstein’'s equations as a thermodynamic identity:

TdS — pdV — dE = 0

)/

temperature and entropy work in virtual
from variation of Ag,, horizon displacement




GRAVITY: THE DUAL DESCRIPTION
T.P.,gr-qc/0311036; gr-qc/0412068

e Einstein’s equations arise from the demand that A = A..r + Anatier
should be invariant under virtual displacements of the horizon

normal to itself.

e Action is the free energy of ‘spacetime solid’; gravitational degrees

of freedom in the bulk is dual to that in the surface.

e Einstein’'s equations as a thermodynamic identity:

TdS — pdV — dE = 0

/)

temperature and entropy work in virtual
from variation of Ag,, horizon displacement

change in the
enerqgy; from A,qtter
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SAKHAROV PARADIGM
Gravity as an Emergent Phenomenon

SOLIDS

Mechanics; Elasticity (p,v ...

Thermodynamics of solids
Statistical Mechanics

of atoms/molecules

SPACETIME

Einstein’'s Theory (g ...)
Thermodynamics of spacetime
Statistical mechanics

of “atoms of spacetime”



KEY NEW RESULT: AREA QUANTISATION

In semi-classical limit, demanding exp 1A, = exp 2min leads to area
quantization:

Area = (87L%)n
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VACUUM FLUCTUATIONS AND pyac

The structure of the vacuum must change due to its own gravitational force. Can
this reduce py to acceptable values ?

e Given Lp and Ly we have p,, = he/L}% and p,, = he/L%,. The observed value of
dark energy density is:

hc c2H?

e [ he hierarchy:

2 4
hc it he ( Lp it he ( Lp n
Pvac = —0y 1 1
Lt Ly \ Ly LY \ Ly
'vacuum renormalisation’ observed value; can come thermal energy density of
makes this zero (?) from fluctuations de Sitter praq x Téy
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phenomenon. Observer dependent horizon thermodynamics is central.
— Every light cone is a horizon for some family of observers.
— Physics beyond horizon is encoded in a surface term which is the entropy.

— Virtual displacements of the horizon leads to T'dS = dFE + pdV which is the
same as Einstein’s equations.

— Locally inertial observers «— Kinematics of spacetime;
Locally accelerated observers <= Dynamics of spacetime;

e Dual description to the conventional one; the full Hilbert action becomes the free
energy of spacetime.

e Obvious implications for qguantum gravity.
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