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Statistical Mechanics: Lecture 10

Ideal Gas of Quantum Particles
We now come to a very important topic in statistical mechanics, properties of an ideal gas
of identical particles. We have already studied ideal gas in classical microcanonical and
canonical ensembles. The indistinguishability of identical particles in quantum mechanics
is of a very fundamental nature, and thus has strong bearing on the properties of gases.
In particular we will be interested in the case where the system can exchange particles
with a heat-bath. Free electron gas in metals and photon gas in a cavity are two examples
where number of particles of the system is not fixed. So, the system is described using the
grand canonical ensemble.

Grand canonical ensemble
The density matrix in the grand canonical ensemble can be written, in general, as

ρii �
e−β(Ei−µNi )

Z
, Z �

∑
i

e−β(Ei−µNi ) (1)

where µ is the chemical potential, andZ the grand partition function. In the sum, index i
denotes the microstates of the system, and Ei and Ni , the energy and number of particles
in the i’th microstate. Now, as the particles are assumed to be non-interacting, each particle
is governed by an identical Hamiltonian, sayHi , with the eigenvalues denoted by εn . The
energy-levels of each particle are also the same - we will call them single-particle energy
levels. For example, many particles can have a particular energy, say, εk .
One way of summing over the number of microstates of the gas, can be to take each
particle one by one, and sum over all its possible energy eigenstates. But, in doing that we
will be tacitly giving them identity, because two particles exchanging their state, does not
give us a new quantum state, or a new microstate.
Another way of counting could be to realize that if we know the occupancy of each single-
particle state, we have specified the particular microstate. For truly identical particles, it
is not important which particle is occupying which energy-level. The only thing important
is how many particles are occupying a particular energy level. Thus, if we denote the
occupancy of single particle states ε1, ε2, ε3, . . . by n1, n2, n3, . . . , a set of values of
n1, n2, n3, . . . specifies a particular microstate. Summing over microstates would mean
summing over all possible values of n1, n2, n3, . . . etc. The energy and number particles
of the system, in a particular microstate, can be written as

E �

∑
j

n jε j , N �

∑
j

n j (2)

The single particle energies ε j depend on the particular problem at hand. For example, for
an ideal gas of particles in a box (in 1-dimension), ε j will be

j2h2

8mL2 . Or if all the particles
are trapped by a harmonic oscillator potential, ε j will be given by the ( j + 1/2)~ω (in
1-dimension).
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The grand partition function can now be written as

Z�

∑
n1

∑
n2

∑
n3

. . . exp *.
,
−β



∑
j

n jε j − µ
∑

j

n j



+/
-

�

∑
n1

∑
n2

∑
n3

. . . exp *.
,
−β

∑
j

n j (ε j − µ)+/
-

�

∑
n1

∑
n2

∑
n3

· · ·

∏
j

exp
(
−βn j (ε j − µ)

)
�

∑
n1

e−βn1(ε1−µ)
∑
n2

e−βn2(ε2−µ)
· · ·

∑
nk

e−βnk (εk−µ) . . . (3)

Let us suppose we want to calculate the average occupancy of a particular energy-state εk .
To do that we should multiply εk by the density matrix, and sum over all the microstates.
That will yield

〈nk〉�
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n2
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n3
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Z

∑
n1

e−βn1(ε1−µ)
∑
n2

e−βn2(ε2−µ)
· · ·

∑
nk

nk e−βnk (εk−µ)
· · ·

∑
ni

e−βni (εi−µ) . . . (4)

In the above equation, the numerator and the denominator (given by (3)) have most
terms common. Each sum in the numerator has a corresponding sum in the denominator,
except the sum over nk , for which the numerator and the denominator terms are different.
Consequently all the sums from the numerator and denominator cancel out, except the
sum over nk , giving

〈nk〉 �

∑
nk nk e−βnk (εk−µ)∑

nk e−βnk (εk−µ) (5)

To proceed further, we should know what are the allowed occupancies of the single-particle
energy-eigenstates. We know that in quantum mechanics, there are two kinds of particles,
Fermions in which occupancy is only 0 or 1, and Bosons in which the occupancy can vary
from 0 to∞.

Bosons (n=0,1,2,3...)
For fermions, the average occupancy of the k’th energy-state is given by

〈nk〉 �

∑
∞

nk�0 nk e−βnk (εk−µ)∑
∞

nk�0 e−βnk (εk−µ) (6)

The denominator is geometric progression, and gives (1 − e−β(εk−µ))−1. The numerator
can be calculated by taking the first derivative of a geometric series, and yields e−β(εk−µ)

(1−e−β(εk−µ) )2
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So, the average occupancy of the k’th energy-state is

〈nk〉 �
e−β(εk−µ)

1 − e−β(εk−µ) (7)

or

〈nk〉 �
1

eβ(εk−µ) − 1
(8)

The above formula describes the average occupancy of single-particle energy-states, for
particles following Bose-Einstein statistics.

Fermions (n=0,1)
For fermions, the average occupancy of the k’th energy-state is given by

〈nk〉 �

∑1
nk�0 nk e−βnk (εk−µ)∑1

nk�0 e−βnk (εk−µ)
�

e−βnk (εk−µ)

1 + e−βnk (εk−µ) (9)

or

〈nk〉 �
1

eβ(εk−µ) + 1
(10)

The above formula describes the average occupancy of single-particle energy-states, for
particles following Fermi-Dirac statistics.
Total number of particles in the system is simply given by

〈N〉 �
∑

k

〈nk〉

which, for the two cases, takes the following form

〈N〉 �



∑
k

1
eβ(εk−µ)

−1 (Bose-Einstein)∑
k

1
eβ(εk−µ)

+1 (Fermi-Dirac)

Finally, we also would like to evaluate the grand partition function Z, given by (3). The
sums can now be carried out to yield

Z �




∏
j

1
1−e−β(ε j−µ) (Bose-Einstein)

∏
j

(
1 + e−β(ε j−µ)

)
(Fermi-Dirac)

From (3) one can see that average occupancy of a energy-state could also have been
calculated by the following relation:

〈nk〉 � −
1
β

∂ logZ
∂εk

. (11)
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