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Statistical Mechanics: Lecture 9

Quantum Statistical Mechanics
Postulates of Quantum Statistical Mechanics

Till now whatever we studied in statistical mechanics, was by using classical laws of motion.
However, all systems in nature follow quantum mechanics, which is the more fundamental
theory. In many situations it is a good approximation to describe even microscopic particles
classically. For example, large molecules and colloid particles can be described well using
classical laws, and hence using classical statistical mechanics suffices. However, majority
of systems which we want to describe using statistical mechanics, are inherently quantum
in nature, and classical laws cannot be used to describe them. For example, a gas of free
electrons should be described using quantum mechanics as things like Pauli’s exclusion
principle are important for them. In the following we will formulate statistical mechanics for
quantum systems.
The state of a quantum system can be described at any instant of time by its wave function
Ψ. In a particular representation, Ψ will be a function of position coordinates of all the
particles, and time. In another representation, it will be a function of momenta of all the
particles, and time. In general it can be just be represented as a vector in Hilbert space,
|Ψ〉. |Ψ〉 can also be written as a linear combination of eigenfunctions of any Hermitian
operator of the Hilbert space. We will write it in terms of the eigenstates of the Hamiltonian
of the system Ĥ, the so-called energy eigenstates, given by Ĥ |Φn〉 � En |Φn〉. The state
of the system can now be written as

|Ψ〉 �

∑
n

cn |Φn〉 (1)

According to quantum mechanics, the expectation value of any observable, represented by
Â, is given by

〈A〉 �
〈Ψ|Â|Ψ〉
〈Ψ|Ψ〉

�

∑
n ,m c∗n cm 〈Φn |Â|Φm〉∑

n ,m c∗n cm 〈Φn |Φm〉
�

∑
n ,m c∗ncm 〈Φn |Â|Φm〉∑

n c∗ncn
(2)

where we have used orthonormality of |Φn〉. The constants cn , cm are in general time-
dependent.
Now macroscopic systems can never be considered isolated systems - they continually
interact with the environment, although extremely weakly. So, the state involved should be
the state of the system plus environment combined. The state will look something like |Ψ〉 �∑

n dn |χn〉|Φn〉, where |χn〉 represent certain states of the environment. Formally we can
still represent the state |Ψ〉 by (1), but the cn should now be identified with dn |χn〉. However,
cn are not constants now, but involve states of the environment. The expectation value of
an observable can still be given by (2), provided we identify c∗n cm with d∗n dm 〈χn |χm〉.
The relation (2) gives the expectation value of the observable at any instant of time. However,
when we measure a thermodynamic system, our measurements are never instantaneous,
quite simply because atoms and molecules move much faster than what our measuring
apparatus can resolve. What wemeasure is really an time-averaged value of the observable.
The time over which the average is done, or rather happens, is much long than typical
collision time of atoms and molecules, but much smaller than the resolving time of our
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apparatus. Thus, the quantity we actually measure, should be given by

〈A〉 �
〈Ψ|Â|Ψ〉

〈Ψ|Ψ〉
�

∑
n ,m c∗ncm 〈Φn |Â|Φm〉∑

n c∗ncn
, (3)

The term c∗n cm represents a time average of d∗n dm 〈χn |χm〉 over times much longer than
the time-scale of molecular motion, but shorter than the resolution time of the measuring
apparatus. This term might look simple in appearance, but is extremely difficult to calculate,
as it involves all the states of the environment, and its interaction with the system. In
general, this term cannot be calculated, and one can only make guesses about it.
If Â represents a measurable macrosocopic observable of a system in thermal equilibrium,
the postulates of quantum statistical mechanics are actually postulates about the form of
c∗ncm. We write the postulates of quantum statistical mechanics as follows.
1. Postulate of Equal a Priori Probability

c∗n cn �

{
1 (E < En < E + ∆E)
0 (otherwise) (4)

Simply put, it implies that only those states are allowed which conform to the fixed energy
constraint. And all such states are equally probable.

2. Postulate of Random Phases

c∗ncm � 0 (n , m) (5)

In quantum mechanics if |ψ1〉 and |ψ2〉 are two allowed states, any superposition of
them, given by α1 |ψ1〉 + α2 |ψ2〉, is also an allowed state. This postulate implies that
quantum superposition of any two energy eigenstates, |Φn〉 and |Φm〉, is not allowed.
This is the effect of the environment on the system, and it grants a special status to
energy eigenstates.

It should be emphasized here that the environment with which the system is assumed to
be interacting here, is not the heat-bath that we have considered in the classical canonical
ensemble before. This environment does not exchange energy with the system, interaction
being extremely weak. Its most important effect is the killing of quantum superpositions of
energy eigenstates of the system.

Density matrix
All of the preceding discussion can also be reformulated in term of density operator, instead
of quantum states. A quantum system in a state |ψ〉 can be described by a density operator
given by

ρ̂ � |ψ〉〈ψ |, (6)

provided that |ψ〉 is normalized. For an unnormalized state, one can write ρ̂ �
|ψ〉〈ψ |

Tr[|ψ〉〈ψ |] ,
where Tr[. . . ] represents trace over a complete set of states. The expectation value of an
observable can then be written as

〈A〉 � Tr[ρ̂Â] (7)

If one uses the energy eigenstates of the system to take the trace over states of the system,
one gets

〈A〉 �
∑
n ,m

〈Φn |ρ̂ |Φm〉〈Φm |Â|Φn〉 �
∑
n ,m

ρnm 〈Φm |Â|Φn〉 (8)
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where ρnm is the called the density matrix. For a pure state, described by a single wave
function, this density matrix is always non-diagonal - it can be diagonal only when the
system is in one of its energy eigenstates. Comparing the above equation with (2), we
conclude that the system in (2) can be described by a density matrix given by

ρnm �
c∗ncm∑
n c∗n cn

. (9)

Furthermore, the postulates of quantum statistical mechanics, stated in the preceding
discussion, imply that this density matrix (in the representation of energy eigenstates) is
diagonal. To put it mathematically,

ρnm �
c∗n cn∑
n c∗n cn

δnm (10)

The density matrix may be non-diagonal if another set of states, different from the energy
eigenstates, are used to take the trace (trace is invariant under change of representation).
The average value of an observable can now be written as

〈A〉 �
∑

n

ρnn 〈Φn |Â|Φn〉. (11)

The above relation represents an average of the observable Â over an ensemble which
consists of copies of the system, in different microstates (quantum states) |Φ1〉, |Φ2〉, |Φ3〉
etc. The microstate (quantum state) |Φk〉 occurs with a probability ρkk . Here ρnm is an
example of a mixed-state density matrix. Such a density matrix cannot represent a single
system in a particular quantum state. It represents a mixture, or an ensemble of systems
in different microstates, occuring with different probability.

Microcanonical ensemble
With the density matrix formulation discussed above, we are all set to describe various
ensembles in quantum statsitical mechanics. Firstly, the counting of microstates, which
was done by calculating the area in phase-space in classical statistical mechanics, is done
by counting the quantum states of the system, labelled by suitable quantum numbers:

1
N!

1
~3N

∫
dpdq →

∑
n

The density matrix for microcanonical ensemble is given by

ρnn �
c∗n cn∑
k c∗k ck

(12)

with the condition
c∗n cn �

{
1 (E < En < E + ∆E)
0 (otherwise) (13)

All those c∗ncn are equal to 1 whose En lies between E and E + ∆E. The rest are zero. So,∑
k c∗k ck is just equal to the number of microstates whose energy eigenvalue lies between

E and E + ∆E, let us call it Ω. The microcanonical density matrix can then be written as

ρnn �

{ 1
Ω

(E < En < E + ∆E)
0 (otherwise) (14)
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Canonical ensemble
Canonical ensemble can be formulated exactly as it was done in classical statisitical
mechanics, by having a system and a much bigger heat-bath. Since none of the arguments
used in our earlier formulation, was specific to the classical nature of the system, the result
can be directly adapted here. The canonical density matrix can be written as

ρnn �
e−βEn

Z
, Z �

∑
n

e−βEn (15)

where Z is the canonical partition function. Off-diagonal elements of the density matrix are
zero. Ensemble average of an observable can be written as

〈A〉 �
1
Z

∑
n

e−βEn 〈Φn |Â|Φn〉 (16)

where |Φn〉 are the eigenstates of the Hamiltonian of the system.

Grand canonical ensemble
The density matrix in the grand canonical ensemble can be written, in general, as

ρii �
e−β(Ei−µNi )

Z
, Z �

∑
i

e−β(Ei−µNi ) (17)

where µ is the chemical potential, andZ the grand partition function. How the microstates
of the system are defined, may depend on the specific problem at hand. We will look at it
in more detail when studying the quantum statistics of ideal gas of identical particles.
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