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Statistical Mechanics: Problems 9.1
1. Problem: Consider a collection of N noninteracting spins (s � 1), in a magnetic field B,

such that the Hamiltonian is given by ŜzB. Using canonical ensemble, find the average
magnetization of the gas.
Solution: Suppose the magnetic field is in the z-direction. The Hamiltonian em for one
spin is given by Ĥ � −gSµB~B · ~S/~ � −gSµBBŜz/~. The energy eigenvalues are given
by Ĥ |m〉 � Em |m〉, where Em � −gSµBBm, m � −1, 0,+1. Energy of N spins can
then be written as

Em1,m2...mN � −gSµBB(m1 + m2 + m3... + mN )

where m1,m2... can take values −1, 0,+1 each. Summing over microstates would
amount to summing over these values. The canonical partition function can then be
written as
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Magnetization in any microstate is given just by the sum of the magnetic moments of all
spins, M(m1,m2...mN ) � −gSµB (m1 + m2 + m3... + mN ). Average magnetization can
be calculated by taking the ensemble average of this quantity:

〈M〉 �
1
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The partition function can also be written in terms of magnetization as
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It should be noticed that the sum in the above equation can also be obtained by taking a
derivative of Z with respect to B, and multiplying with −1/β:
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Plugging the expression for Z from (1) in the above equation, we get

〈M〉�−
2N gSµB sinh(βgSµBB)

1 + 2 cosh(βgSµBB)
(3)
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2. Problem: Let there be quantum mechanical rotator with a Hamiltonian Ĥ �
L̂2

2I . As-
suming that the rotator can take only two angular momentum values l � 0 and l � 1,
calculate the average energy in canonical ensemble.
Solution: Eigenvalues of the Hamiltionian can be obtained by using the simultaneous
eigenstates of L̂2 and L̂z , which are denoted by |lm〉. These states are also eigenstates
of Ĥ,

Ĥ |lm〉 �
~2l(l + 1)

2I
|lm〉

There are 2l + 1 values of m corresponding to each value of l. Eigenvalues do not
depend on m, and hence energy-levels are (2l + 1)-fold degenerate. The partition
function can thus be written as

Z�
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Average energy is given by
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3. Problem: An ideal gas of N spinless atoms occupies a volume V at temperature T. Each
atom has only two energy levels separated by an energy ∆. Find the chemical potential,
free energy, average energy.
Let the two energy levels have energy ε1 and ε2, with ε2 − ε1 � ∆. For one particle, the
partition function can be written as Z � e−βε1 + e−βε2 . The atoms being, non-interacting,
one can write the partition function for N particles as

Z �

(
e−βε1 + e−βε2

)N

Helmholtz free energy is given by

F � −kT log Z � −NkT log
(
e−βε1 + e−βε2

)
The chemical potential is given by

µ �

(
∂F
∂N

)
T,V

� −kT log
(
e−βε1 + e−βε2

)
Average energy is given by

〈E〉 � −
∂ log Z
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�
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e−βε1 + e−βε2
) �
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4. Problem: A simple harmonic one-dimensional oscillator has energy levels En � (n +

1/2)~ω, where ω is the characteristic oscillator (angular) frequency and n � 0, 1, 2, . . .
(a) Suppose the oscillator is in thermal contact with a heat reservoir kT at temperature

T. Find the mean energy of the oscillator as a function of the temperature T, for the
cases kT

~ω � 1 and kT
~ω � 1

(b) For a two-dimensional oscillator, n � nx + ny, where Enx � (nx + 1/2)~ωx and
Eny � (ny + 1/2)~ωy, nx � 0, 1, 2, . . . and ny � 0, 1, 2, . . . , what is the partition
function for this case for any value of temperature? Reduce it to the degenerate case
ωx � ωy .

Answer (a): The partition function can be written as
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∞∑
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�
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The average energy can now be easily calculated

〈E〉 � −
∂ log Z
∂β

�
~ω
2 coth(β~ω/2) (6)

For β~ω � 1, which is the high-temperature limit, coth(β~ω/2) ≈ 2/β~ω. The average
energy takes the form 〈E〉 ≈ kT. For β~ω � 1, which is the very-low-temperature limit,
coth(β~ω/2) ≈ 1. The average energy takes the form 〈E〉 ≈ ~ω2 , which is precisely the
zero-point energy of the oscillator.
Answer (b): The partition function can be written as
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∞∑
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∞∑
ny�0

e−β(ny+1/2)~ωy

�
1

4 sinh(β~ωx/2) sinh(β~ωy/2)

When ωx � ωy � ω, the above relation reduces to

Z �
1

4 sinh2(β~ω/2)

This is exactly the same as the partition function of two independent, similar, one-
dimensional harmonic oscillators.


