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Statistical Mechanics: Lecture 6

Entropy in Canonical Ensemble
In microcanonical ensemble, the entropy of the system was defined very simply in terms of
the total number of microstates Ω, which are all equally probable

S(E) � k log [Ω(E)] (1)

Energy of the system is fixed at E. As all microstates are equally probable, the probability
of one microstate is 1/Ω. The above expression can be written in terms of this probability
of one microstate

S(E) � −k log
[ 1
Ω(E)

]
(2)

In the canonical ensemble, microstates with different energy occur with different probability.
For that reason, one may want to rewrite the above equation as an average over microstates.
This will help in extending this relation to the case of canonical ensemble.

S(E) �
∑

i

1
Ω(E)

(
−k log

[ 1
Ω(E)

])
(3)

Since all terms in the sum in (3) are equal, and there are exactly Ω terms, it will add to give
(2). Defining 1/Ω to be the probability of a microstate ρi, the above can be written as

S(E) � −k
∑

i

ρi log ρi (4)

This definition of entropy can now be carried over to canonical ensemble, in a straightforward
manner. The only difference is that the sum now involves microstates with all possible
energies

S � −k
∑

i

ρi log ρi (5)

where ρi is the probability of the i’th microstate, given by

ρi �
e−βEi

Z
, (6)

Z is the canonical partition function given by Z �
∑

i e−βEi , and Ei is the energy of the
system in i’th microstate. In terms of the classical phase space variables, the entropy can
be written as

S � −k
1
∆

∫
ρ(p , q) log

[
ρ(p , q)

]
dpdq (7)

where ρ(p , q) is the density function in canonical ensemble, and ∆ is the phase volume
corresponding to one microstate.
Since for canonical ensemble, ρi has a specific form (6), we can put it in (5) and get an
expression for entropy in terms of Z.
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Helmholtz Free Energy

S�−k
∑

i

ρi log ρi

�−k
∑

i

e−βEi

Z
log

(
e−βEi

Z

)
�−k

∑
i

e−βEi

Z
(
−βEi − log Z

)
�βk

∑
i

e−βEi Ei

Z
+

k
Z

log Z
∑

i

e−βEi

�βk〈E〉 +
k
Z

log(Z)Z

�βk〈E〉 + k log(Z) (8)

where 〈E〉 is the ensemble average of the energy of the system. The above equation can
be rewritten as

〈E〉 − TS � −kT log Z (9)

But from thermodynamics we know that the Hemlholtz free energy is given by F � U − TS.
Here, 〈E〉 is the internal energy of the system, what is represented by U in thermodynamics.
Thus we find the expression for Helmholtz free energy in canonical ensemble to be

F � −kT log Z (10)

Classical Ideal Gas in Canonical Ensemble
Let us study our simplest problem of a classical ideal gas, which we studied using micro-
canonical ensemble earlier, now using canonical ensemble. Energy of the gas is given
by

E �

N∑
i�1

*.
,

p2
xi

2m
+

p2
yi

2m
+

p2
zi

2m
+/
-

(11)

where the sum over i goes over all N particle. The partition function can thus be written as

Z�
1
~3N

∫
e−βE

N∏
i�1

dpxidpyidpzi dxi dyidzi

�
1
~3N

∫
exp


−β
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i�1

*.
,
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+

p2
yi

2m
+
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2m
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-
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dpxidpyidpzi dxi dyidzi

�
1
~3N
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i�1

exp
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�
1
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∫
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xi

2m
+
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+
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+/
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dpxidpyidpzi dxi dyidzi (12)
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Since the particles are non-interacting and identical, these N integrals will also be identicial.
Integral over space will just give the volume of the box enclosing the gas, and momenta
will vary from −∞ to +∞. Partition function thus looks like

Z�
1
~3N

N∏
i�1

V
∫
∞

−∞

exp

−β

p2
xi

2m


dpxi

∫
∞

−∞

exp

−β

p2
yi

2m


dpyi

∫
∞

−∞

exp

−β

p2
zi

2m


dpzi

(13)

Using the properties of Gaussian integrals, this above equation simplifies to

Z�
1
~3N

N∏
i�1

V
(
2mπ
β

)3/2

�
1
~3N VN

(
2mπ
β

)3N/2

(14)

Average energy is now given by

〈E〉�−
∂
∂β

N log *
,

1
~3 V

(
2mπ
β

)3/2
+
-

(15)

The above simplifies to give

〈E〉 �
3
2NkT (16)

Entropy of the ideal gas can now be calculated by substituting expression for Z from (14)
into (8). Doing that, we get

S�βk〈E〉 + k log(Z)

�βk
3
2NkT + k log *

,
1
~3N VN

(
2mπ
β

)3N/2
+
-

�
3
2Nk + Nk log *

,
V

[
2mπkT
~2

]3/2
+
-

�
3
2Nk + Nk log *

,
V

[
4mπ(3NkT/2)

3N~2

]3/2
+
-

�
3
2Nk + Nk log

(
V

[4mπ〈E〉
3N~2

]3/2)
(17)

This result is identical to the one obtained using microcanonical ensemble, if one identifies
the average energy 〈E〉 with the fixed energy E in microcanonical ensemble. For indistin-
guishable particles, one should have an additional factor of 1/N! in the partition function
(14). With that addition, the above expression will lead to the Sackur-Tetrode equation.
Thus, canonical and microcanonical ensemble yield identical results for the classical ideal
gas, as they should.
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