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Statistical Mechanics: Lecture 2

Canonical Ensemble
The microcanonical ensemble, which we studied in the previous lecture, is applicable to
systems which are thermally insulated. However, in reality the systems are interacting
with their surroundings. A typical jar of gas is not insulated, but can exchange energy
with the surroundings. For this reason, and also that the microcanonical ensemble is
often cumbersome to use, we formulate another ensemble which better describes realistic
situations.
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Most thermodynamic systems we study
are isolated only in the sense that the
particles cannot penetrate the walls of
the enclosure, but energy can be ex-
change through the walls. The sur-
roundings can be considered as a kind
of heat-bath or heat-reservoir, which is
much much larger than our system of
interest. It is assumed to be so large
that any exchange of energy with our
system of interest, will not have any no-
ticeable effect on it. The system of inter-
est, and the heat-bath, taken together,
is assumed to be a closed system such that

� + �� = �) , (1)
where � is the energy of our system of interest, �� is the energy of the heat-bath, and
their sum is �) . � and �� are supposed to be variable, but �) is fixed. Total number of
microstates of the combined system is

Ω =

∫
Ω((�)Ω�(��)3� (2)

where the integral is a sum over possiblities of various amounts of energy exchanges
between the system and the heat-bath. For example, the term � = 0 in the integral would
correspond to a situation where the system transfers all its energy to the heat-bath. The
total system is closed, and can be treated in microcanonical ensemble.
Now, the number of microstates corresponding to the system having energy � is given by

Ω(�)=Ω((�)Ω�(��)
=Ω((�)Ω�(�) − �) (3)

One should convince oneself that if there are two systems with, say, 3 microstates each,
the combined system will have 3 × 3 = 9 microstates. Microstates of the combined system
should have been labelled by � and ��, but since there is only one independent variable, it
suffices to label it by �. We now write Ω�(�) − �) in terms of the entropy of the heat-bath,
using the Boltzmann definition of entropy ( = : logΩ:

Ω(�)=Ω((�)4 log(Ω�(�)−�))

=Ω((�)4
1
: : log(Ω�(�)−�))

=Ω((�)4
1
: (�(�)−�)) (4)
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where (� is the entropy of the heat-bath. Since the heat-bath is much much larger than
our system of interest, it is obvious that � � �� , �) . The entropy of the heat-bath can now
be expanded in a Taylor series in �:

(�(�) − �) = (�(�)) + �
%(�
%�

����
�=0
+ �

2

2!
%2(�
%�2

����
�=0
+ . . . (5)

We ignore the �2 and higher order terms in the series, assuming � to be small, and plug in
this expression in (4)

Ω(�)≈Ω((�) exp
[
1
:
(�(�)) +

1
:
�
%(�
%�

]
(6)

But
%(�
%�

=
%��
%�

%(�
%��

= −%(�
%��

= − 1
)
, (7)

where ) is the temperature of the heat-bath. Strictly speaking, this should be the tem-
perature of the heat-bath when the system has tranferred all its energy to the heat-bath
because %(�

%� in the above equation is actually %(�
%�

���
�=0

. However, since the heat-bath is
assumed to be much larger that the system, its temperature will not change noticeable
when it exchanges energy with the system.
The number of microstates of the combined system, corresponding to the system having
energy �, can now be written as

Ω(�)=Ω((�) exp
[
1
:
(�(�)) −

�

:)

]
=Ω((�)4(�(�) )/:4−�/:) (8)

Let us reflect at this expression for a moment. The term 4(�(�) )/: is constant, as far
as � is concerned. From microcanonical ensemble we know that all microstates (with
same energy) are equally probable. This holds true here too, but for the microstates of
the system plus heat-bath. If one wants to concentrate only on the system, as we do
because we it is the system we are studying, things are slightly different. Corresponding to
a microstate of the system with energy �, the heat-bath has 4(�(�) )/:4−�/:) microstates.
So, two microstates of the system with different energies, will have different number of
microstates of the heat-bath associated with them. From the system’s point of view, it will
appear as if microstates of the system with different energies, have different probability of
occurance.
Total number of microstates of the combined system can be written as

Ω=

∫
Ω((�)4(�(�) )/:4−�/:)3� (9)

So, the probability of the system having energy � should be equal to the number of
microstates corresponding to the system having energy �, divided by the total number of
microstates

%(�)= Ω((�)4(�(�) )/:4−�/:)∫
Ω((�)4(�(�) )/:4−�/:)3�

=
Ω((�)4−�/:)∫
Ω((�)4−�/:)3�

=
Ω((�)4−�/:)

/
, (10)
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where / =
∫
Ω((�)4−�/:)3� is called the partition function. Earlier we had defined the

number of microstates of a system in terms of accessible phase-space volume,

Ω(�) =
∫
�

3?3@

Δ
, (11)

where integral of 3?3@ represents integral over all positions and momenta of all particles,
over the constant energy surface with energy �, and Δ is the smallest phase-volume of
one microstate. For example, for N particles in 3-dimensions, Δ = ℏ3# . The probability of
the system having energy � can now be written as

%(�)=
1
Δ

∫
�
3?3@4−�(?,@)/:)

1
Δ

∫
3?3@4−�(?,@)/:)

(12)

Notice that the integral in the numerator is over a constant energy surface with fixed energy
�, while the that in the denominator is over all phase space.
We can thus define a density function

�(?, @) = 4−�(?,@)/:)

1
Δ

∫
3?3@4−�(?,@)/:)

=
4−�(?,@)/:)

/
, (13)

such that �(?, @)3?3@ gives the probability of the system having momentum between ?
and ? + 3? and position between @ and @ + 3@. Thus �(?, @) describes the normalized
density of microstates (of the system plus heat-bath) in phase space. The partition function
is now written as

/ =
1
Δ

∫
4−�(?,@)/:)3?3@ (14)

The partition function / might not look very important as one might think that the information
about microstates etc has already been summed over. However, the partition function
turns out to be a singly most useful entity in statistical mechanics, and most measurable
quantities can be expressed in terms of /.
The thermal average of any quantity � can now be written as

〈�〉 = 1
Δ

∫
�(?, @)�(?, @)3?3@ = 1

Δ

1
/

∫
�4−�/:)3?3@ (15)

The stage is now set for us to study any system using canonical ensemble.
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