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Statistical Mechanics: Lecture 3

Classical Ideal Gas

Now that we have the expression for the entropy in
microcanonical ensemble, let us use it to calculate the
entropy of an ideal gas of classical particles. Let there
be N particles of mass < each, enclosed in a box of
volume + . The Hamiltonian is given by
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where sum over 8 represents sum over all particles
and the three components. Let the total energy of the
gas be �. Total number of microstates can then be
written as
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The integral over space can be carried out straight-
away, giving the volume,
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Momenta are constrained by the relation∑
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If the summation over 8 were not there, this would
be the equation of a sphere with radius

√
2<�. With

the summation, it is the equation of a 3N-dimensional
hypersphere of radius

√
2<�. We assume that the en-

ergy is not exactly contant, but can vary by an amount
Δ�. Δ� is chose to satisfy

�

#
< Δ� � �. (5)

The momentum space volume accessible to the gas is
a thin shell of a 3N-dimensional hypersphere of radius√

2<�, and thickness
√

<
2�Δ�. Here we have used

the fact that ' =
√

2<�, and hence 3' =
√

<
2� 3�

Clearly our thermodynamic results should not depend
on this arbitrary Δ�. Volume in the momentum space
accesible to the system is equal to (surface area of
a 3N-dimensional hypersphere of radius

√
2<�) ×√

<
2�Δ�. Volme and surface area of a n-dimensional

hypersphere are given by
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So, the surface area of a 3N-dimensional hypersphere
of radius

√
2<� is given by

(3# (
√

2<�) = 2�3#/2

Γ(3#/2)(2<�)
(3#−1)/2 (7)

Total number of microstates can now be written as

Ω(�, #,+)=+
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Entropy of the gas can now be written as

((�,+, #)=: logΩ

=: log
(
+#

ℏ3#
(2�<�)3#/2
(3#/2 − 1)!

Δ�

�

)
=#: log

(
+
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−: log{(3#2 − 1)!} + : log(Δ�

�
) (9)

For a macroscopic gas, # is very large, of the order
of 1023, and it makes sense to use the Stirling formula
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log(=!) ≈ = log(=) − =. So we get

log{(3#2 − 1)!}≈(3#2 − 1) log(3#2 − 1) − 3#
2 + 1

≈(3#2 − 1) log(3#2 ) −
3#
2 + 1

(10)

Entropy of the gas now takes the form
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In the equation above, the terms in the curly brackets
are all much smaller than the other terms, which are
at least of order # , and hence can be neglected to
yield

( = #: log

(
+

[
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]3/2)
+ 3#:

2 (12)
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Entropy of Mixing: Gibbs Paradox

Mixing of two different gases is an irreversible process.
It should thus lead to an increase in entropy. Let us
check that out in our expression for entropy of an
ideal gas. Let there be a box of volume + , which is
partitioned as shown in the figure. Let there be two
different, but similar, gases in the two partitions, at
the same temperature and pressure. We remove the
partition, and allow the gases to mix.
Before mixing, the initial entropy of the combined sys-
tem, before mixing, is just the sum of the entropies of
the two gases:
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After the partition is removed, the energy, pressure,
temperature of the gases will not change, as they were
already at same temperature and pressure. The only
difference is that now volume + is available to both
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the gases. The final entropy, after mixing, looks like

(�=#1: log
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The change in entropy is given by

Δ( = (� − (� = #1: log
(
+

+1

)
+#2: log

(
+

+2

)
(15)

E   N   V
1 1

E   N   V
2 2 21

Clearly, the entropy increases after mixing of the two
gases, which is what one would expect. Δ( is called
the entropy of mixing. However, there is a problem.
If the two gases were identical, removing the parti-
tion should not have any effect. But our expression
for entropy given by (12), yields the same change in
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entropy (15) even if the two gases are identical! One
can verify that for same gas in the two partitions, the
expression (14) reduces to the expression (12) of en-
tropy of a gas of N particles in a volume V. In this case
�1/#1 = �2/#2 = �/# . The final entropy in the case
of identical gases, is given by

(�=#1: log

(
+

[
4�<�
3#ℏ2

]3/2)
+ 3#1:

2

+#2: log

(
+

[
4�<�
3#ℏ2

]3/2)
+ 3#2:

2

=(#1 + #2): log

(
+

[
4�<�
3#ℏ2

]3/2)
+3(#1 + #2):

2

=#: log

(
+

[
4�<�
3#ℏ2

]3/2)
+ 3#:

2 (16)

For the case of same gas in the two parts, removing
the partition is a reversible process, because one can
reinsert the partition later, and one will not be able to
make out if the partition was removed before. Hence,
the change in entropy on removing the partition should
be zero. The fact that expression (12) for entropy



Tabish Qureshi

yields a non-zero entropy of mixing for identical gases,
is called Gibbs paradox.
Gibbs empirically realized that while counting the num-
ber of microstates, if one divides the number of mi-
crostates by # !, the paradox disappears. He con-
cluded that our counting of microstates must be thus
wrong. The way we have counted the microstates, in-
terchanging two particles gives one a new microstate.
However, from quantum mechanics we know that el-
ementary particles and atoms should be treated as
identical particles. So, the way we have counted the
microstates, we have done an overcounting by assum-
ing the particles to distinguishable. So, we must divide
by # ! to correct for it. Equantion (8) will thus take the
following form

Ω(�, #,+)= 1
# !

+#

ℏ3#
(2�<�)3#/2
(3#/2 − 1)!

Δ�

�
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Using Stirling’s approximation for # !, we have to sub-
tract :(# log(#) − #) from (12) to obatin the correct
expression for entropy

((�, #,+) = #: log
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This is called the Sackur-Tetrode equation, and de-
scribes the entropy of a classical (monoatomic) ideal
gas. It is named for Hugo Martin Tetrode (1895-1931)
and Otto Sackur (1880-1914), who developed it inde-
pendently as a solution of Boltzmann’s gas statistics
and entropy equations, at about the same time in 1912.
The entropy of two gases before mixing is now given
by
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If the two gases are the same, +1/#1 = +2/#2 =
+/# and energy per particle is also same, if they
are at the same temperature and pressure, �1/#1 =
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�2/#2 = �/# . So, the above equation reduces to
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which is the equation for the entropy of the gas of N
particles in a volume V, that is, the gas after mixing.
So, for the case of same gas, mixing has no effect.
One can verify that for the case of different gases, the
Sackur-Tetrode equation leads the same expression
for the entropy of mixing, as given by (15).
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Equation of state

In thermodynamics, the pressure of a gas is defined
as

% ≡ )
(
%(

%+

)
�

(21)

We plugin the expression for entropy from (18) in the
equation to obtain the pressure of our classical ideal
gas.

%=#:)
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This is the familiar equation of state for an ideal gas.
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