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Statistical Mechanics: Lecture 1

Thermodynamics and microscopic laws
Thermodynamics describes the macroscopic properties of matter phenomenologically with
the aid of equations of state which are derived empirically. For thermodynamics it is of no
importance, how a certain equation of state comes about. This, of course, is consistent
with the large universality of thermodynamics, namely that same laws of thermodynamics
hold for different materials. However, this doesn’t tell us what makes, say, the specific
heat of one material different from the other. It is intuitively obvious that specific heat of
one material is different from that of the other because microscopically the materials are
different. The macroscopic quantities in materials must obviously be resulting from the
microscopics properties. For example, the pressure of a gas is due to the collisions of the
molecules with a surface, whereas temperature is directly given by the mean kinetic energy
of the particles.
On the other end, the microscopic laws of physics describe the behaviour of individual
particles with their interaction, very well. For classical particles we use Newton’s equations
of motion, and for quantum particles we use the Schrödinger equation. Although micro-
scopics laws describe the behavior of particles accurately, they do not tell us how a huge
collection of particles, of the order of 1023, would behave on the average.
It is the task of statistical mechanics to answer this question, namely how microscopic
behavior of particles or small constituents, leads to a particular macroscopic property of the
material. Thus, statistical mechanics provides a connection between microscopic physics
and thermodynamics.
One may take the view that microscopic laws describe the physics of one particles, and
hence, they should describe the behavior of an assembly of particles (however large). A
gas of N classical particles can be described by a set of coupled equations of motion
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where ~ri is the position vector of the i’th particle, with mass mi, and ~Fi is the force acting
on it because of interaction with all other particles, and any external influence. A solution
of these equations would allow us to know exact position and velocity of each particle
at any future time. That information allows us to know the microscopic state (which we
will henceforth call microstate) of the gas at every instant of time. Solving these coupled
equations analytically is generally not possible. However, one can solve such equations
numerically, using computers. However, for a realistic situation N is of the order of 1023,
and solving such a large number of equations numerically is beyond the capacity of any
existing computer.
One should realize that for describing the macroscopic state of a gas, characterized by
pressure, volume, temperature (which we will henceforth call macrostate), we do not need
information on every microscopic detail which these coupled equations could provide. A
huge number of microstates may correspond to the same, single microstate. We would,
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for instance, be interested in knowing the pressure of the gas, and not bother about what
a particular atom of the gas is doing at every instance. In other words, we only need
some average macroscopic quantities, and not every microscopic detail. So, solving these
coupled differential equations would anyway be an overkill, if at all we were able to solve
them. We need a conceptually different approach to this problem.

Phase space
Let us first be more specific about the the concept of microstates. For a classical system
it is sufficient to know at a time t all generalized coordinates qi (t) and momenta pi (t)
to uniquely specify the state of motion of the system. Thus for a mechanical system we
can interpret the set {qi , pi , i � 1, 2, ...N } as the microstate of this system. For a sin-
gle particle in one dimension, there is only one position variable x and one momentum
variable px. If we plot x on the x-axis and px on the y-axis, a point on the graph will
represent one state of the particle. As the particle moves in time, the point will follow
a trajectory. We will call the space described by x and px, phase space, the point rep-
resenting a particular value of x and px, a phase point, and the trajectory followed by
the point, the phase trajectory. In this particular case, the phase space is 2-dimensional.
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PHASE TRAJECTORIES

If a single particle moves
in 3 dimensions, we would
need 6 coordinate axes for
x , y , z , px , py , pz. For N
particles in 3-dimensions,
the phase space will be 6N-
dimensional. So, the set
{qi , pi } can now be under-
stood as a point in a 6N-
dimensional phase space.
A point in this phase space
describes particular value
of position and momentum
values of all N particles. Hence, a definite point in this phase space exactly corresponds to
one microscopic state of motion of the whole system.
The trajectory in phase space is governed by Hamilton’s equations

q̇i �
∂H
∂pi
, ṗi � −

∂H
∂qi

where the Hamiltonian H(q,(t), p,(t)) corresponds to the (possibly time-dependent) total
energy of the system. It is a function of the phase-space point (q, p), and of time. In a
closed global system, in which the Hamiltonian does not depend explicitly on time, the total
energy

E � H(p(t), q(t))

is a conserved quantity. Thus, the phase trajectory always moves on a constant-energy
curve or multi-dimensional surface.

Statistical Ensembles
Each microstate of a N-particle gas is represented by a point in the 6N-dimensional phase
space. So, if one considers all possible microstates which the gas can have, one will have
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a huge collection of points in the phase space. This collection of points in the phase space,
of all possible microstates of the system, is called an ensemble. Or one can imagine each
point in the phase space representing an imaginary copy of the system, each in a different
microstate. This collection of imaginary copies of the system, each in a different microstate,
is called an ensemble. When the gas evolves in time, in the phase space it basically goes
from one phase point to the next, in a specific sequence. Any macroscopic quantity of the
gas which we measure, is not measured instantaneously. Rather it is measured over a
finite time, which is very long compared to the time-scale of motion of the particles of the
gas. So, the measured quantity is actually a time-averaged quantity.
The basic idea of statistical mechanics is the following. In doing a time-average of a
quantity, one is basically looking at different values the quantity takes, as it goes from one
microstate to the other, during its time evolution. And then one takes an average of all the
values of the quantity. As far as taking the average is concerned, it is not important what
the sequence in going from one microstate to the other is. One can just take the phase
points of the ensemble, over which the system goes, and take the average. In other words,
the time average can be replaced by the average over the whole ensemble.
To enable one to replace time-average by ensemble-average, some conditions have to be
satisfied. First of all, average over the ensemble implicitly assumes that the system visits all
phase points during its time evolution. Not only that, it is also assumed that all microstates
are equally likely to be visited. So it better happen so in reality. If the system spends more
time in certain microstates, and less in some others, our assumption will break down. This
assumption constitutes, what is called, the ergodic hypothesis. The ergodic hypothesis
says that, over long periods of time, the time spent by a system in some region of the phase
space of microstates with the same energy is proportional to the phase-volume of this
region, i.e., all accessible microstates are equiprobable over a long period of time. Ergodic
hypothesis is a pillar of statistical mechanics, however, it cannot be proven in general. It is
assumed to be true, and finds justification in the fact that statistical mechanics turns out to
be a successful theory, in agreement with experiments.
We will first consider an isolated system, typically a gas enclosed in a box, which is thermally
insulated. So, any time evolution of the system will be subject to the constraint that the total
energy remains constant. Left for a long time, it is believed to be in equilibrium. We further
assume that given an isolated system in equilibrium, it is found with equal probability in
each of its accessible microstates. This is the postulate of equal a priory probability. This
postulate is at the very core of statistical mechanics. Now each macrostate comprises of
numerous microstates. For example, all the gas confined to only one half of the box, is a
macrostate. There is a huge number of ways this can happen, by various arrangements
of particles and their momenta. The gas uniformly occupying the whole volume of the
box, is another macrostate. And again, there are a huge lot of microstates associated
with this macrostate. Now each microstate is equally probable, but we never actually
see a gas occupying only one half of its container. Why does that happen? It happens
because the number of microstates associated with the gas occupying the whole volume
are overwhelmingly large, compared to the microstates associated with the gas occupying
only one half of the box.
One can get an idea of the numbers involved in such situations, by a simple example. Let
there be an array of 4 noninteracting magnetic moments, each of which can only take
values +1 or -1, in some suitable units. Now, assume that each magnetic moment is free
to flip up and down, i.e., +1 or -1. We can use the total magnetic moment of the array
to describe a macrostate. There is only one microstate associated with the macrostate
with total magnetic moment 4, which is (+1+1+1+1). If one considers the macrostate with
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total magnetic moment zero, the microstates associated with it are (+1+1-1-1), (-1-1+1+1),
(+1-1+1-1), (+1-1-1+1), (-1+1+1-1), (-1+1-1+1). So, there are 6 microstates associated
with total magnetic moment 0, while only 1 with magnetic moment 4. One can easily see
that if there were 10 magnetic moments, there would still be only one microstate associated
with total magnetic moment 10. However, the number of microstates associated with total
magnetic moment 0 in that case, will be overwhelmingly large. So, in a system of 10
magnetic moments which are freely flipping, one will almost never see magnetic moment
10, and the magnetic moment will appear to be zero or very small all the time.
A close analogy can be drawn from probability theory. Suppose there are different people
doing 100 coin-tosses each. Almost all of them will get nearly equal number of heads and
tails. It is next to impossible for anyone to obtain 100 heads or 100 tails. Probability of a
100 heads is (1/2)100, which is infinitisimally small. Probability of any single configuration
is also exactly the same. For example, the probability of getting alternate heads and tails
for all 100 tosses is also (1/2)100. However, the number of configurations in which the
number of heads and tails are 50-50 is overwhelmingly large.
In the light of the above argument, we conclude that equilibrium state is the one in which
the number of microstates is maximum. In reality, the system will go over all microstates,
as the ergodic hypothesis states, but it will be mostly found in certain macrostates.
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