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Quantum Mechanics: Ehrenfest theorem

Heisenberg picture

Consider a particle of mass <, moving in one dimen-
sion, in a potential + . The Hamiltonian is then given
by

�̂ =
?̂2

2< ++(Ĝ). (1)

The Heisenberg equation of motion for position can
be written as

3

3C
Ĝ(C) = 8

ℏ
[�̂, Ĝ(C)], (2)

where Ĝ(C) = *̂C Ĝ(0)*̂†C , *̂C = exp(8�̂C/ℏ) being the
unitary time evolution operator. Since *̂C commutes
with �̂, and Ĝ commutes with +(Ĝ), the above equa-
tion yields

<
3

3C
Ĝ(C) = ?̂. (3)

Similarly, the Heisenberg equation of motion for the
momentum operator can be written as

3

3C
?̂(C) = 8

ℏ
[�̂, ?̂(C)] = 8

ℏ
*̂C[+(Ĝ), ?̂(0)]*̂†C . (4)
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Now let us assume that the potential+ is an analytical
function of G and it can be expanded in a Taylor series

+(G) =
∞∑
==0

+ (=)(0)
=! G= , (5)

where + (=)(0) denotes the =th derivative of +(G) at
G = 0. Using the series form of the potential, Heisen-
berg equation of motion for ?̂ can be written as

3

3C
?̂(C)= 8

ℏ
*̂C

∞∑
==0

+ (=)(0)
=! [Ĝ= , ?̂]*̂†C

=−*̂C

∞∑
==0

+ (=)(0)
=! =Ĝ=−1*̂†C

=−
∞∑
==0

+ (=)(0)
=! =Ĝ=−1(C), (6)

where we have used the well known commutation
relation [Ĝ= , ?̂] = 8ℏ=Ĝ=−1. But

∑∞
==0

+ (=)(0)
=! =Ĝ=−1 is

just the derivative of + , denoted by +′. Then the
Heisenberg equation of motion for ?̂ assumes the
form

3

3C
?̂(C) = −+′(Ĝ(C)). (7)



Tabish Qureshi

Using (3) and (7), one can write

<
32

3C2
Ĝ(C) = 3

3C
?̂(C) = −+′(Ĝ(C)). (8)

This is a fully quantum mechanical equation involving
operators, but has the exact form of the Newton’s equa-
tion of motion. The only assumption that we made in
arriving at this equation is that the potential is an ana-
lytical function which can be expanded in a Taylor se-
ries. For conciseness, the Taylor expansion was done
around G = 0, but one can convince onself that the ar-
gument goes through for expansion around any other
value. For example, for the potential +(Ĝ) = −1/Ĝ,
the commutation relation [?̂ , 1/Ĝ] = 8ℏ/Ĝ2 leads to
the equation of motion: 3?̂(C)/3C = −1/Ĝ2(C).

Ehrenfest theorem

Now one can take the expectation value of both sides
of equation (8) and get

<
32

3C2
〈Ĝ〉 = 3

3C
〈?̂〉 = −〈+′(Ĝ)〉, (9)

where the angular brackets denote the expectation
value. This is the familiar equation denoting Ehrefest
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theorem. It shows that the expection values of position
and momentum approximately follow Newton’s equa-
tions of motion. It is approximate because 〈+′(Ĝ)〉 ≠
+′(〈Ĝ〉). For example, if +′(Ĝ) = Ĝ2, then

〈+′(Ĝ)〉=〈Ĝ2〉 = 〈Ĝ〉2 + (ΔG)2

=+′(〈Ĝ〉) + (ΔG)2 (10)

So, if the state is such that the uncertainty in position
is small, then 〈+′(Ĝ)〉 ≈ +′(〈Ĝ〉), and one can say
that the expectation values follow classical dynamics.

Notice that for a Harmonic oscillator, the potential is
+(G) = 1

2<$2G2, and its derivative +′(G) = <$2G is
linear in G. Consequently 〈+′(Ĝ)〉 = +′(〈Ĝ〉), which
means that the expectation value of the position al-
ways follows classical dynamics.
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