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Quantum Mechanics: Formulation

Postulates of quantum mechanics
Since we have constructed a new theory, quantum me-
chanics, from scratch, by writing down the Schrödinger
equation, we need to have a set of rules to follow. The
postulates of quantum mechanics constitute these
rules. The postulates are as follows.
1. The state of a system is specified, at a time C, by a

wave-function (typically denoted by #). The wave-
function contains all information about the system.

2. All observabe quantities are denoted by Hermitian
operators.

3. The measurement of an observable yields one of
its possible eigenvalues, as the measured value.
The wave-function of the system changes to the
corresponding eigenfunction of the measured ob-
servable, due to the act of measurement.

4. If the wave-function of the system is given by

#(G) =
∑
=

0=)=(G),

where )=(G) are the eigenfunctions of the observ-
able to be measured, the measurement will result
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in the system changing to the wave-function ):(G)
with the probability |0: |2.

5. The time evolution of the state of the system is gov-
erned by the time-dependent Schrödinger equation

8ℏ
%#(G)
%C

= �̂#(G),

�̂ being the Hamiltonian of the system.
Apart from these postulates, there are also some prop-
erties which every physical wave-function must satisfy:
{ Wave-function must be continuous and differen-

tiable everywhere.
{ Wave-function must be single-valued everywhere.

If it could have more than one value at a point, it
would mean a particle has more than one probability
of being found at that point, which is unacceptable.

{ Wave-function should be normalized over all space:∫ ∞
−∞ |#(G)|

23G = 1.
{ Wave-function should go to zero in limits G → ∞

and G → −∞. This basically is a consequence of
the previous condition.

Bra-Ket notations
In the modern formulation of quantum mechanics, one
need not deal with wave-functions which can become



Tabish Qureshi

cumbersome. We now introduce new notations, called
Dirac notations, or Bra-Ket notations, which will make
our expressions more concise. The notations are as
follows:

#(G) → |#〉 ket
#∗(G) → 〈# | bra∫ ∞

−∞
)∗(G)#(G)3G→ 〈) |#〉 inner product (1)

One has freedom to choose any label of the wave-
function to label the ket. For example #0(G) may be
replace by |#0〉 or just |0〉. The advantage of this no-
tation can be seen by writing some important relations
we have used till now:

�̂ |#〉=� |#〉 Time-independent Schrodinger eqn.

8ℏ
%

%C
|#〉=�̂ |#〉 Time-dependent Schrodinger eqn.

〈# |�̂† |)〉=〈) |�̂|#〉∗ Adjoint of an operator
〈#< |#=〉=�<= Ortho-normality of eigenstates(
�̂|#〉

)∗
=〈# |�̂† (2)

Instead of the wave-function, now we will talk of the
state of the system, represented by a ket. The state is
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an abstract entity, and it is meaningless to ask what
is the form of the state. Properties of a state will be
specified by the effect of various operators on it. In fact,
it the modern formulation of quantum mechanics we
will see that many problems which were traditionally
dealt by solving differential equations, can be solved
by dealing only with commutation relations between
operators and the effect of operators on various kets.

Eigenstates of Hermitian operators
First let us prove an important theorem about eigen-
state of Hermitian operators. Eigenstates of a Her-
mitian operator, with different eigenvalues, are or-
thogonal. Let us consider a Hermitian operator �̂with
two eigenstates with different eigenvalues:

�̂|#1〉 = 
1 |#1〉, �̂|#2〉 = 
2 |#2〉

We write the relation for the adjoint of �̂ (which is �̂
itself):

〈#1 |�̂|#2〉 = 〈#2 |�̂|#1〉∗

Using the fact that these are eigenstates of �̂, and also
recognizing that eigenvalues of Hermitian operators
are real, we get


2〈#1 |#2〉 = 
1〈#2 |#1〉∗
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But 〈#2 |#1〉∗ = 〈#1 |#2〉, which leads to

〈#1 |#2〉(
2 − 
1) = 0

Since 
1 ≠ 
2, the above is possible only if 〈#1 |#2〉 =
0. Hence |#1〉, |#2〉 are orthogonal. But what about
two eigenstates of a Hermitian operator which have
same eigenvalues (degenerate states)?

�̂|#3〉 = 
 |#3〉, �̂|#4〉 = 
 |#4〉

It is true that |#3〉, |#4〉 may not be orthogonal, and
〈#3 |#4〉 ≠ 0. However, consider the state

|#′4〉 = �

(
|#3〉 −

1
〈#3 |#4〉

|#4〉
)
,

where � is a normalization constant, which can be
determined. It can be easily checked that 〈#3 |#′4〉 = 0,
meaning |#′4〉 is orthogonal to |#3〉. Also

�̂|#′4〉 = �

(

 |#3〉 −

1
〈#3 |#4〉


 |#4〉
)
= 
 |#′4〉,

which means that |#′4〉 is also an eigenstate of �̂ with
an eigenvalue 
. So, one can use |#′4〉 in place of
|#4〉 so that all eigenstates of �̂ are orthogonal to each
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other. It is easy to see that even if there are more than
two degenerate eigenstates of �̂, such a procedure
can be used to construct mutually orthogonal eigen-
states. One can now assert that all eigenstates of a
Hermitian operator are mutual orthogonal:

�̂|#=〉 = 
 |#=〉 =⇒ 〈#< |#=〉 = �<= .

Thus the eigenstates of a Hermitian operator form an
ortho-normal set, each state being normalized, and
being orthogonal to all other states. We also noted
that such an ortho-normal set describes an abstract
space called Hilbert space. The ket states are vectors
in the Hilbert states, and any other state of this Hilbert
space can be represented in terms of this set:

|)〉 =
∞∑
==0

2= |#=〉, (3)

2= being certain constants specific to |)〉. If one wants
to know what a particular constant (say) 2: is, one can
just multiply the bra state 〈#: | on both side of the
above equation.

〈#: |)〉 =
∞∑
==0

2= 〈#: |#=〉 =
∞∑
==0

2=�<= = 2: .
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So 2: is just 〈#: |)〉.

Outer product
If one puts a bra and a ket state as |)〉〈# |, what does
it mean? To find that out let us put another to the right
of it:

(|)〉〈# |)|"〉 = |)〉〈# |"〉
The RHS is a state times the inner product (which is a
number). The outer product thus acts on a state, and
gives another state. But that precisely is the definition
of an operator! Thus outer product is an operator.
Let us rewrite (3) using the fact that 2: = 〈#: |)〉

|)〉=
∞∑
==0

2= |#=〉,

=

∞∑
==0
〈#= |)〉|#=〉 =

∞∑
==0
|#=〉〈#= |)〉,

=

( ∞∑
==0
|#=〉〈#= |

)
|)〉.

(4)

Comparing the LHS and RHS of the above, we con-
clude that term in the brackets is nothing but an identity
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operator
∞∑
==0
|#=〉〈#= | = 1̂.

This is known as a completeness relation and is very
useful because it can be inserted in any expression
without changing anything. This property can also be
described by saying that the set of states {|#=〉} form
a complete set of states. One could choose another
Hermitian operator �̂ with the eigenstates

�̂|1=〉 = �= |1=〉.

The set {|1=〉} also form a complete set. They can
also be used to describe the same Hilbert space that
we described using eigenstates of operator �̂. This is
similar to the fact that 3-dimensional real space can
be described using the cartesian coordinates by 8̂ , 9̂ , :̂,
and also by another set of unit vectors Â , �̂, )̂ if one
uses spherical polar coordinates.

Simple exercises using completeness
As a simple exercise, let us find the trace of the oper-
ator |)〉〈# |. Trace is known to be independent of the
basis. So, we can use any complete set of states for
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the job.

)A(|)〉〈# |)=
∞∑
==0
〈1= |(|)〉〈# |)|1=〉 =

∞∑
==0
〈1= |)〉〈# |1=〉

=

∞∑
==0
〈# |1=〉〈1= |)〉 = 〈# |

∞∑
==0
|1=〉〈1= | |)〉

=〈# |)〉. (5)

Cyclic property of trace
Let us prove the cyclic property of trace, namely)A(�̂�̂�̂) =
)A(�̂�̂�̂).

)A(�̂�̂�̂)=
∞∑
==0
〈1= |�̂�̂�̂ |1=〉

=

∑
=,<

〈1= |�̂|1<〉〈1< |�̂�̂ |1=〉

=

∑
=,<

〈1< |�̂�̂ |1=〉〈1= |�̂|1<〉

=

∑
<

〈1< |�̂�̂
∑
=

|1=〉〈1= |�̂|1<〉

=

∑
<

〈1= |�̂�̂�̂|1=〉 = )A(�̂�̂�̂). (6)
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Expectation value
Till now we have associated the eigenvalue of an op-
erator with the value of the corresponding observable
quantity. But there are situations when the state of the
system is not an eigenstate of the operator of one’s
interest. How does one talk of the value of an observ-
able in such a situation. For this general situation one
can use the expectation value which is defined as

〈�̂〉 = 〈# |�̂|#〉.

Physical meaning of the expectation value, in terms of
measurements, will discussed later when we discuss
measurements in quantum mechanics. However, one
can easily see that in case the state is an eigenstate
of the operator, the expectation value is equal to its
eigenvalue:

〈#= |�̂|#〉= = 〈#= |
= |#〉= = 
= 〈#= |#〉= = 
= .
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