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Quantum Mechanics: Particle in a box

Energy of a particle in a box
Consider a particle of mass <, which is trapped inside a one-dimensional box of length
!. Inside the box, the particle is free, but the two walls of the box are rigid, and the box
can neither penetrate them, nor go out of the box. Thus the potential experienced by the
particle is zero inside the box and infinite at the two walls and beyond. The Hamiltonian is
given by

�̂ =
?̂2

2< ++(Ĝ), (1)

which can be written in the position representation as

�̂ =
−ℏ2

2<
32

3G2 ++(G), +(G) =
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∞ G ≥ !, G ≤ 0 (2)

Notice that since there is only one variable G, we use total derivatives instead of partial
derivatives. The time-independent Schrödinger equation can be written as
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3G2 ++(G)#(G) = �#(G). (3)

This is a 2nd order differential equation, and can be easily solved inside the box, because
the potential energy term is zero there. Inside the box the Schrd̈inger equation is
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The solution of the equation
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equation. We could have also written the above equation as(
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In that case, the solution of the equation
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#(G) = 0 will also be a solution of

the above equation. A second order equation can have only two independent solutions.
These two solutions can easily be gotten as

#1(G) = 4 8:G , #2(G) = 4−8:G ,

where : =
√

2<�/ℏ. The general solition will be a linear combination of these two solutions,
namely

#(G) = 214
8:G + 224

−8:G ,
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where 21, 22 are undetermined constants. We have gotten the eigenfunction, but we still
don’t have the energy of the particle. So, what is missing? We have solved the Schrödinger
equation inside the box, but have left out the boundary, and the region of space outside the
box. Instead of putting in infinite potential, which can potentially create problems, we can
simply use the physical condition that the particle cannot penetrate the boundary, and thus
the probability of finding it inside the walls should be zero. From Born’s interpretation of
the wave-function we have learnt that the |#(G)|23G is the probability of finding the particle
between G and G + 3G. The probability density of finding the particle at a position G is
|#(G)|2. Since particle cannot penetrate the walls, we have, |#(0)|2 = 0 and |#(!)|2 = 0.
This in turn means #(0) = 0 and #(!) = 0. From the first condition we get 22 = −21, which
implies

#(G) = 2821 sin(:G).
The second condition yields

#(!) = 2821 sin(:!) = 0,

which means :! = =�, = = 1, 2, 3 . . . . We cannot have = = 0 because that will
make : zero, and the wave-function zero everywhere. The wave-function cannot be zero
everywhere, because that would imply that the probability of finding the particle anywhere
is zero, i.e., the particle does not exist. Thus

: =
=�
!
, = = 1, 2, 3 . . .

and there are many eigenfunctions corresponding to those, which we label by =

#=(G) = 2821 sin(=�G/!).
Recalling the relation of : to energy, we get

√
2<�=
ℏ

= =�

or
�= =

=2ℎ2

8<!2 , = = 1, 2, 3 . . .

We arrive at a very interesting result which says that the particle which is trapped inside a
box, cannot just take any value of energy. There are only fixed, quantized values it can
take. The energy of the particle is quantized. This is something that never happens in
classical mechanics. We shall see later that this quantization of energy is not a special
case here, but happens whenver a particle is confined to a small region.

Normalization of the eigenfunctions
Since |#(G)|23G is the probability of finding the particle in a small region around G, if we
sum it over all G, it should give us the probability of finding the particle in all of space. Since
the particle does exist, the probability of finding it anywhere in all of space should be 1:∫ ∞

−∞
#∗(G)#(G)3G = 1. (4)

This is called the normalization condition, and must be satisfied by all wave-functions
representing a physical system. Using the normalization of all eigenfunctions #=(G), we
can find the unknown constant 21, and get the final normalized eigenfunctions as

#=(G) =
√

2
! sin(=�G/!), = = 1, 2, 3 . . . (5)
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and we have ∫ ∞

−∞
#∗=(G)#=(G)3G = 1

for all #=(G).

Orthogonality of eigenfunctions

Using the expression for the eigenfunctions (5), suppose we evaluate
∫ ∞
−∞#

∗
<(G)#=(G)3G

where < ≠ =, what do we get? We find∫ ∞

−∞
#∗<(G)#=(G)3G = 0.

So, we have a lot of eigenfunctions

#1, #2, #3, #4, #5, #6, . . .

If we multiply them to their own complex conjuge, and integrate, we get 1. If we multiply
them to the complex conjuge of a different eigenstate, and integrate, we get 0. There is a
close analogy with the unit vectors in the catesian coordinate system

8̂ , 9̂ , :̂ .

We know that 8̂ · 8̂ = 9̂ · 9̂ = :̂ · :̂ = 1, which means they are unit vectors. But 8̂ · 9̂ = 9̂ · :̂ =
:̂ · 8̂ = 0, which means they are orthogonal or perpendicular to each other. So it appears that
#1,#2,#3, . . . are like unit vectors in some abstract space, and are orthogonal to each other.
The 3 unit vectors 8̂ , 9̂ , :̂ describe a 3-dimensional space. Similarly, the infinite number
of eigenfunctions #1,#2,#3, . . . can be thought of as describing an infinite-dimensional
space. This space is called the Hilbert space.
We know that any arbitrary vector in 3-dimensional space, can be represented in terms of
the unit vectors 8̂ , 9̂ , :̂

®� = 01 8̂ + 02 9̂ + 03 :̂ ,

where 01, 02, 03 are certain constants, specific to the vector ®�. Exactly in the same way,
any wave-function of this particle in the box can represented in terms of the eigenfunctions
of Hamiltonian #1,#2,#3, . . .

)(G) = 01#1(G) + 02#2(G) + 03#3(G) + . . . ,

where 08 are certain constants, specific to the wave-function )(G).
One might think that this orthogonality of the eigenfunctions of the Hamiltionian may be
because of the kind of Hamiltonian or something else. However, we shall see later that this
is a generic property - eigenfunctions of all Hermitian operators are mutually orthogonal.
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