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Quantum Mechanics: WKB Method

memm—— The Semi-Classical (WKB) Approximation

Quantum mechanics is believed to be the ultimate theory to describe nonrelativistic particles.
However, in order to describe any arbitrary system using quantum laws, one needs to
solved the Schrédinger equation, which may not be an easy task in all situations. One then
looks for ways in which one can get an approximate solution, which might be the result
of the peculiarity of a situation. For example, if we understand the system in a particular
situation, and there is an additional weak modification of that situation, it can be treated
as a perturbation. The weakness of this perturbation allows one to use the specialized
method called perturbation theory to understand the system.

We believe that the systems which look classical, should also be describable by quantum
laws. However, in that situation the quantum dyanamics would look closer to classical
dynamics. However this distinction between quantum behavior and classical behavior
cannot be abrupt, it should be gradual. Electrons and protons are well described by quantum
mechanics, whereas colloidal particles are well described by classical laws. But there
would be intermediate situations where particles will behave partially quantum mechanically
and partially classically. We would like to formulate an approximate way of studying such
systems within the quantum formalism, exploiting the knowledge that the system behaves
in a semi-classical way. This approximation was formulated by Wentzel, Kramers and
Brillouin, hence the name WKB approximation.

The Classical Limit
Let us suppose that the wave-function of a particle, in a potential can be written in the form

Y(x) = expl (], 0

where S(x) may be some simple or complicated function. This form may occur either
naturally, for example for a free particle energy eigenstate (x) = e7?*), may be forced
by us by introducing a suitable S(x). One would notice that the S(x) for a free particle,
S(x) = px, is just the classical action.

The classical limit is understood to be the limit where 7 is effectively zero. Of course %
being a universal constant, it’s value cannot change, but what we means by saying it is
effectively zero is that the magnitude of action S of the system is so large that 7 (which has
the dimensions of action) is negligible in comparison. So the semiclassical limit should be
the one where 7 is not effectively zero, but effectively small. Let us then write S(x) in (1)
as a series in powers of i1

S(x) = So(x) + iS1(x) + H2Sx(x) + H3S3(x) + .. . 2)
We first substitute the form (1) in the time-dependent Schrédinger equation
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Cancelling out the exponential term on both sides, one gets

=55 t3nam - V@ (5)
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If we take the classical limit by putting 7z equal to zero, the second term on the right hand side
goes to zero and, by virtue of (2), the function S(x) is reduced to Sy(x). The Schrédinger
equation is now reduced to

Sy 1 (dSp) ~
W + — (W) + V(X) =0. <6)

But this is just the classical Hamilton-Jacobi equation, with So(x) being the classical action.
Thus we see a remarkable result that in the classical limit, the Schrédinger equation is
reduced to the classical Hamilton-Jacobi equation. The limit 7 — 0 may then be seen as
describing the quantum to classical transition, just as 1/c — 0 is understood to describe
relativistic to non-relativistic transition.

The Quasi Classical Approximation

From the preceding argument, the function S(x) in (2) should be understood to reduce to
the classical action in the limit 7 — 0. However, if 1 is assumed to be small, but not zero,
we should be able to describe the semi-classical regime.

We start by substitution the form of the wave-function (1) in the time-independent Schrédinger
equation
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Cancelling out the exponential term from both sides, the above reduces to
ds J’s
— — =2m(E -
(8x) zha m(E - V(x)) 9)

Assuming that 7 is effectively small, we approximate S(x) by S(x) ~ Sp(x) + hS1(x).
Substituting it in the above equation, and recognizing 2m(E — V(x)) as p?, we get

850 @ _ a SO _ 2& S] _ .2
(8x h&x) h&xz in o2 P (10)

Equating like powers of 71 on both sides, we get

950 _
ox
9S50 9S1_.d%So
2o ox o (1)

where we ignore %% and higher powers with the understanding that 7 is effectively small.
First of the above two relations gives

So(x) = i/p dx (12)
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and the second one gives

851_ i (9]9

dx  2pdx
S1=ilog(4/Ipl) (13)

The wave-function in the semi-classical limit may now be written simply by substituting the
above in (1) and (2). The semi-classical energy eigenfunction assumes the following form

P(x)=exp (i% / p dx —log( |P|))

1 i
=——exp (i—/p dx) (14)
p] h

Particle in a bound potential

Let us how to apply the WKB approximation to the case of a particle bound by a one-
dimensional potential, as shown the figure alongside. The particle is under the influence of

a potential V(x), and its energy E = % + V(x) is fixed. Notice that at the two positions
x1 and xp, the following is true, V(x1) =

V(x;) = E. Atthese two points, the classical A
momentum is zero: these are the classical V(X
turning points, points where the kinetic en-

ergy of the particle becomes zero. Taking

these points as guides, we can divide the

position space into three regions, |, Il and lIl.

In region I, V(x) < E is true and p = E

VE — V(x) is real. This is the classically al- | [l 1]l
lowed region. In regions |, and Ill, V(x) > E

istrueand p = \/E — V(x)isreal. Thisisthe < X1 X, Vg
classically forbidden region, and classically 7

the particle cannot exist here. However, we

know that in quantum mechanics, phenom-

ena like tunneling are possible, and the particle can exist in this region too, although with
an attenuated probability. In all the three regions, the wave-function (14), with both + signs,
should be taken into account.

The most general states in the three regions can be written as

A 1 M
= o (-5 [ wlas]

yb;;(x):% exp (%/p dx) + %exp (—% /p dx)

Yrr(x)= D

1 X
exp(——/ |p|dx), (15)
Vip] Tt Js,

where A, B, C are constants to be determined, and the exponentially increasing terms have
been dropped because the wave-function should go to zero as x — +oo. The constants
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can be determined by applying the condition that the wave-function is continuous across
the three regions:

Yr(x1) = ¥(x1),  Yu(x2) = Pr(x2). (16)

The problem is that precisely at these two points, the wave-function (14) breaks down
because when p becomes zero, the term 1/\/|]7| diverges.

The remedy for this problem is that close to a point (say) x1, the potential V(x) can be
approximated by V(x) = V(x1) + (x — x0) ‘Zl—‘; x=xo» Which is a linear potential and exactly
solvable. The exact wave-function for this potential can expressed in terms of Airy functions,
and can be used to match 1;(x1) with ¢17(x1). We skip the derivation of these connection
formulas, as excellent analysis of these widely exist in the literature. We just present the

final connection formulas:

A 1 [ A (1 [ i
t,l)l(x):\/ﬁexp(—%/x |p|dx) = gbn(x):%sm(ﬁfxl pdx+z)

Yrr(x) = % sin (%/x ’ p dx + g) — yYmx) = \/% exp (—% /xz Ip| dx) .
(17)

Now the two expression for ¢17(x), in the two formulas, should be identical, becuase they
represent the same wave-function in the same region:

wll(x):%sin(%/xpdx+g):%sin(%/xzpdx+g) (18)

The above equation of the form A sin 61 = D sin 6;, which can be satisfied if
01+ 6, = (ﬂ + 1)7’( and A= (—1)nD.

This condition implies
1 [ n 1 [ T
= dx + —+ = dx+ —=(n+1
h/x1px 1 h/xpx g m

1 X2 1
ﬁ/x p dx=(n + 5)nt

1

(19)

Now the phase-space integral from x; to x can be written as half the integral over the

. [*2 1 - . -
complete loop x1 — x2 — x1: fx1 pdx = 5 55 p dx. Thus, the above condition simplifies
to:

‘75 pdx=(n+3h (20)

The above relation looks deceptively simple, but it's usefulness cannot be overstated.
Basically what it says is that if one calculates the classical phase-space integral over the
complete loop, or the area of phase-space enclosed by the two turning points, it should
just be equal to (n + %)h. Notice that no further quantum mechanical analysis required to
solve a specific problem. Only the area of phase space needs to be calculated.
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—— Specific examples

Particle in a box

Consider a particle of mass m enclosed in a box whose two walls areat x =0 and x = L.
The energy is just the kinetic energy, and is given by E = p2/2m. The particle switched

between the two momenta values p = V2mE and p = —V2mE, as it bounces between the
two walls. The phase trajectory is a rectangle whose x-dimension is L and y-dimension is
2V2mE. So, area of phase-space enclosed inside the phase trajectory is

%pdx:2V2mExL:(n+%)h

Squaring both sides, we find the WKB energy as

_ (n + 3)*h?
8mL?

As one can see, this energy is very close to the exact energy eigenvalues of the Hamiltonian,

; _ n’n?
given by En = SmLZ

Harmonic oscillator

Consider a particle of mass m in a harmonic oscillator potential, such that the classical

energy is given by

E = p?/2m + %ma)zxz.

This equation can be recast as

2 2
P +— =1,
2mE  2E/mw?

which is immediately recognized as the equation of an ellipse, which has two axes equal to
V2mE and \/2E/m/a). The area enclosed by this ellipse is

?5 pdx =nV2mE~N2E/m/w = (n + %)h,

which gives the WKB energy as

E=(n+bho.

The above is equal to the exact energy eigenvalues of a quantum harmonic oscillator.
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