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Scattering as time-dependent perturbation

Scattering is normally viewed as a particle coming from a distance and briefly interacting
with a fixed scatterer, and the moving far away. This is pictorially depicted in the figure.

Incoming

Outgoing

Scatterer

One would naively imagine treating a localized particle
moving in time, briefly coming clode to the scatterer, and
then moving away. However, in quantum mechanics
the incoming particle is treated as a plane wave, which
in effect means that the particle is spread out over all
positions, and the scattering potential is switched on at a
specific time. One may want to consider the particle long
after this time. Before interacting with the scatterer, the
particle is assumed to be in a stationary state of the “free"
Hamiltonian, and after the scatter too, it is assumed to be found in one of the eigenstates
of the free Hamiltonian. So, the problem essentially becomes that of a time-dependent
perturbation, and it’s Hamiltonian can be written as

H � H0 + V (r), (1)

where H0 most commonly is the Hamiltonian of a free particle, i.e., H0 � p2/2m

Guessing a solution

The equation one has to solve then, is

(H0 + V (r)) |ψ〉 � E |ψ〉, (2)

where E is an eigenvalue of the full Hamiltonian. The above equation can be manipulated
to put in the following form:

(E − H0) |ψ〉 � V (r)|ψ〉, (3)

so that we can write a formal solution as

|ψ〉 � 1
E − H0

V (r)|ψ〉. (4)

It is quite obvious that fraction is in a danger of accidentally becoming singular. We can
remedy that by adding an infinitesimal complex number to the denominator:

|ψ〉 � 1
E − H0 + iε

V (r)|ψ〉. (5)

Now, if we know that before the perturbation V (r) is applied, the system is in an “initial"
eigenstate of H0, say, i〉, we can add it by hand,

|ψ〉 � |i〉 + 1
E − H0 + iε

V (r)|ψ〉, (6)
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becuase when V (r) � 0, the state is |ψ〉 � |i〉. Equation (6) is known as the Lippmann-
Schwinger equation. That, of course, was a very ad-hoc way getting to it, although it
turns out to be the right equation in the end.

The interaction picture

We will first recall the interaction picture, which is very useful in studying time-dependent
perturbation theory. If the system is governed by a Hamiltonian which has the following
form:

H � H0 + V (t), (7)
where V (t) is a time-dependent perturbing potential. We can define a state and operator
in the interaction picture as follows:

|ψ(t)〉I � e iH0t |ψ(t)〉 AI � e iH0tAe−iH0t (8)

One can write a Schrödinger-like differential equation for |ψ(t)〉I from (8)

i~
∂|ψ(t)〉I
∂t

� V I |ψ(t)〉I . (9)

A formal solution to the above would look like

|ψ(t)〉I � U I(t)|ψ(0)〉I . (10)

Time-dependent perturbation theory

Here we will follow amore rigorous approach to studying the problem of scattering. Suppose
after the scattering, at time t the system is in a state |ψ(t)〉. We seek the probability that it is
found in the eigenstate of the unperturbed Hamiltonian, |n(t) � e−iH0t |n〉. The probability
amplitude is given by

〈n(t)|ψ(t)〉�〈n |e iH0t |ψ(t)〉
�〈n |ψ(t)〉I (11)

Using (9) we can write∫ t

t0

∂|ψ(t′)〉I
∂t′

dt′�− i
~

∫ t

t0

V I |ψ(t′)〉I dt′

|ψ(t)〉I − |ψ(0)〉I�−
i
~

∫ t

t0

V I |ψ(t′)〉I dt′

|ψ(t)〉I�|ψ(0)〉I −
i
~

∫ t

t0

V I |ψ(t′)〉I dt′ (12)

With all the formalism in place, we now turn back to our problem of scattering where the
particle is assumed to be in an initial state |i〉, such that H0 |i〉 � Ei |i〉. We assume that at
time t0 the perturbing potential V (r) is switched on. The probability amplitude of finding
the system in a state |n(t)〉, such that H0 |n(t)〉 � Ei |n(t)〉, is given by

〈n |ψ(t)〉I � 〈n |i〉 −
i
~

∫ t

t0

〈n |V I |ψ(t′)〉I dt′ (13)
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The state of the system at time t can be written in terms of the state at time t � 0, as
follows:

|ψ(t)〉I � U I(t , t0)|ψ(0)〉I � U I(t , t0)|i〉, (14)

which can transform our equation of interest as

〈n |U I(t , t0)|i〉�〈n |i〉 −
i
~

∫ t

t0

〈n |V IU I(t′, t0)|i〉dt′

�〈n |i〉 −
∑

m

i
~

∫ t

t0

〈n |V I |m〉〈m |U I(t′, t0)|i〉dt′

�〈n |i〉 −
∑

m

i
~

∫ t

t0

〈n |e iH0t′V e−iH0t′ |m〉〈m |U I(t′, t0)|i〉dt′

�〈n |i〉 −
∑

m

〈n |V |m〉 i
~

∫ t

t0

e iωnm t′〈m |U I(t′, t0)|i〉dt′, (15)

where ωnm � (En − Em)/~. At this stage we would like to recall the transition amplitude
that is calculated in the first-order perturbation theory, which leads us to the very useful
Fermi golden rule. That transition amplitude is given by

〈n |U I(t , t0)|i〉 � 〈n |i〉 − 〈n |V |i〉
i
~

∫ t

t0

e iωni t′dt′. (16)

We insist that we would like to put (15) in the form (16). We conjecture the following form
for (15):

〈n |U I(t , t0)|i〉 � 〈n |i〉 − Tni
i
~

∫ t

t0

e iωni t′dt′, (17)

where Tni are certain matrix elements which are supposed to play the same role that
Vni ≡ 〈n |V |i〉 play in the Fermi golden rule. Right now we do not know what Tni are, but
we will seek a solution for them. We may also be interesting in looking at our system long
after the scattering has occured, which means t0 could be long back in the past, close to
−∞. However, the integrand in the above being oscillating, it is difficult to find a convergent
solution. We remedy this problem by adding a small term ζt′ in the exponent. This will
make the integrand go to zero as t0→ −∞. Of course in the end we will put ζ � 0. At the
current time, ζt ∼ 0. Thus the above equation can be recast as

〈n |U I(t , t0)|i〉�〈n |i〉 − Tni
i
~

∫ t

t0

e iωni t′+ζt′dt′

�〈n |i〉 − Tni
i
~

e iωni t′+ζt′

iωni + ζ

����t
−∞

�〈n |i〉 + Tni
e iωni t

−~ωni + i~ζ
(18)

In the following we use ε ≡ ~ζ. We subsitute U I(t′, t0) in the integral on the RHS of (15),
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by (18), which leads us to

〈n |U I(t , t0)|i〉�〈n |i〉 −
∑

m

〈n |V |m〉 i
~

∫ t

t0

e iωnm t′〈m |i〉 + VnmTmi
i
~

∫ t

t0

e iωnm t′ e iωmi t

−~ωmi + iε
dt′

�〈n |i〉 − 〈n |V |i〉 i
~

∫ t

t0

e iωni t′dt′ +
∑

m

Vnm
Tmi

−~ωmi + iε
i
~

∫ t

t0

e iωni t′dt′

�〈n |i〉 −
(
〈n |V |i〉 +

∑
m

〈n |V |m〉 Tmi

−~ωmi + iε

)
i
~

∫ t

t0

e iωni t′dt′ (19)

Comparing the above with (17), we conclude that

Tni � 〈n |V |i〉 +
∑

m

〈n |V |m〉 Tmi

−~ωmi + iε
(20)

This is a system of linear equations, with as many equations as the number of unknowns.
Solution would mean Tni will be expressible as a linear combination of Vnm:

Tni �
∑

m

〈n |V |m〉cnm , (21)

where cnm are certain constants. We conjecture that there is a state |ψ+

i 〉 such that cnm are
its expansion coeeficients in the basis {|m〉}, i.e., |ψ+

i 〉 �
∑

j cn j | j〉. Thus cnm � 〈m |ψ+

i 〉.
The above equation can then be written as

Tni � 〈n |V
∑

m

|m〉cnm � 〈n |V |ψ+

i 〉. (22)

There is a label i on |ψ+

i 〉 because cnm will be different for each Tni. Equation (20) can
then be written as

〈n |V |ψ+

i 〉�〈n |V |i〉 +
∑

m

〈n |V |m〉 1
−~ωmi + iε

〈m |V |ψ+

i 〉

�〈n |V |i〉 +
∑

m

〈n |V 1
Ei − Em + iε

|m〉〈m |V |ψ+

i 〉

�〈n |V |i〉 +
∑

m

〈n |V 1
Ei − H0 + iε

|m〉〈m |V |ψ+

i 〉

�〈n |V |i〉 + 〈n |V 1
Ei − H0 + iε

V |ψ+

i 〉 (23)

Since the above must be true for all |n〉

V |ψ+

i 〉�V |i〉 + V
1

Ei − H0 + iε
V |ψ+

i 〉, (24)

or

|ψ+

i 〉�|i〉 +
1

Ei − H0 + iε
V |ψ+

i 〉. (25)
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This is the Lippmann-Schwinger equation, guessed earlier in (6). So we see that the
Lippmann-Schwinger equation comes out by treating scattering as a time-dependent
perturbation. Wave-function is straight-forward to calculate from the above:

ψ+

i (r)�〈r |ψ
+

i 〉 � 〈r |i〉 + 〈r |
1

Ei − H0 + iε
V |ψ+

i 〉

�〈r |i〉 +
∫

dr′〈r | 1
Ei − H0 + iε

|r′〉〈r′|Vψ+

i 〉. (26)

Assuming that we are dealing with free particles coming and getting scattered, the unper-
turbed Hamiltonian H0 �

1
2m p2, such that H0 |k〉 � ~

2k2

2m |k〉. We introduce a complete set
of momentum states (

∑ |k′〉〈k′| → 1
(2π)3

∫
dk′|k′〉〈k′| ) in the above to get

ψ+

i (r)�〈r |i〉 +
∫

dr′
1
(2π)3

∫
dk′〈r | 1

Ei − H0 + iε
|k′〉〈k′|r′〉〈r′|Vψ+

i 〉

�〈r |i〉 +
∫

dr′
1
(2π)3

∫
dk′〈r |k′〉 1

~2k2/2m − ~2k′2/2m + iε
〈k′|r′〉〈r′|Vψ+

i 〉

�〈r |i〉 +
∫

dr′
1
(2π)3

∫
dk′

e i(r−r′)k′

~2k2/2m − ~2k′2/2m + iε
〈r′|Vψ+

i 〉

�〈r |i〉 +
∫

dr′G+(r , r′)〈r′|Vψ+

i 〉, (27)

where G+(r , r′) � 1
(2π)3

∫
dk′ e i(r−r′)·k′

k2−k′2+iε′ is called the Green’s function.

The Scattered Wavefunction

Wave-function is straight-forward to calculate from the above: Assuming that we are dealing
with free particles coming and getting scattered, the unperturbed Hamiltonian H0 �

1
2m p2,

such that H0 |k〉 � ~
2k2

2m |k〉.

〈r |ψ+〉�〈r |i〉 + 2m
~2

∫
dr′G+(r , r′)〈r′|Vψ+〉

ψ+(r)�ψinc(r) +
2m
~2

∫
dr′G+(r , r′)V(r′)ψ+(r′), (28)

where G+(r , r′) � 1
(2π)3

∫
dk′ e i(r−r′)·k′

k2−k′2+iε′ is called the Green’s function.

The 3-dimensional integral over momentum can be represented in spherical polar coor-
dinates as,

∫
dk′ �

∫
k′2dk′

∫ π

0 sin θ′dθ′
∫ 2π

0 dφ′. Additionally, the momentum coordi-
nates can be so chosen that θ′ is the angle between k′ and r − r′, so that (r − r′) · k′ �
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|r − r′|k cos θ′. Thus the Green’s function has the form

G+(r , r′)�
2π
(2π)3

∫ ∞

0
k′2dk′

∫ π

0

e i |r−r′ |k′ cos θ′

k2 − k′2 + iε′
sin θ′dθ′

�
1
(2π)2

∫ ∞

0
k′2dk′

∫ 1

−1

e i |r−r′ |k′µ

k2 − k′2 + iε′
dµ

�
1
(2π)2

∫ ∞

0

k′2

k2 − k′2 + iε′
e i |r−r′ |k′ − e−i |r−r′ |k′

i |r − r′|k′ dk′

�
1

(2π)2i |r − r′|

∫ ∞

−∞

k′e i |r−r′ |k′

k2 − k′2 + iε′
dk′, (29)

where integration variable µ � cos θ′ was chosen. It is now time to mention the reason for
putting super- and sub-scripts "+" on |ψ+〉 and G+(r , r′). By the taking a complex conjugate
of equation (28) on can also study scattering backwards in time. In this situation, the
state will be |ψ−〉 and the Green’s function G−(r , r′) will have a −iε′ instead of iε′. In the
following analysis, we will only consider scattering forward in time, and hence drop the
subscript "+".

Now the integrand in G+(r , r′) has poles at k′ ≈ k + iε/2k and k′ ≈ −k − iε/2k. The
integral can be evaluated by the method of residues using contour integration. If we use a
semicircular contour in the upper part of the complex plane, it will contain only one pole
at k′ � k + iε/2k. The other pole at k′ � −k − iε/2k, lies in the lower part, outside the
contour. The value of the integral will be 2πi × residue:∫ ∞

−∞

k′e i |r−r′ |k′

k2 − k′2 + iε′
dk′ � −πie i |r−r′ |k (30)

The Green’s function now simplifies to

G+(r , r′)�−
e i |r−r′ |k

4π |r − r′| . (31)

The expression for the scattered wave also simplifies to

ψ(r)�ψinc(r) −
m

2π~2

∫
e i |r−r′ |k

|r − r′|V(r
′)ψ(r′)dr′. (32)

Asymptotic limit

Now that we have a general expression for scatter wavefunction, we consider the realistic
situation where the detector (at position r) is kept far away from the scatterer, in the sense
that the range of the scattering potential is short compared to r . The integral over r′ will
effectively be confined to only those value of r′ where the potential is nonzero. So, for a
detector kept far away from the scatterer, we have the situation r � r′ or r/r′ � 1. So,
we can use the following approximations

e i |r−r′ |k
� e ik
√
(r−r′)2

� e ik
√

r2−2r ·r′+r′2
� e ikr

√
1−2r ·r′/r2+(r′/r)2 ≈ e ikr−k(r/r)·r′

� e ikr−k·r′
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and 1
|r−r′ | ≈

1
r . The asymptotic expression for the scattered wave assumes the form

ψ(r)�ψinc(r) −
m

2π~2
e ikr

r

∫
e−ik·r′V(r′)ψ(r′)dr′. (33)

It should be mentioned here that the integral in the above equation no longer depends on
r. It only depends on the angles θ, φ corresponding to r .

Scattering Amplitude and Cross Section

If the incoming wavefunction is a plane wave, say Ae ik0.r , (41) has the form

ψ(r)�A
[
e ik0.r − e ikr

r
f (θ, φ)

]
, (34)

where f (θ, φ) � m
2π~2

∫
e−ik·r′V(r′)ψ(r′)dr′. In (34) the first term on RHS represents the

incoming plane wave, and the second term represents an outgoing spherical wave e ikr/r,
times an amplitude f (θ, φ). Thus f (θ, φ) can be interpreted as the scattering amplitude.

The number of particles scattered into a solid angle element dΩ, which is just short for
sin θdθdφ, is proportional to an important quantity, the differential cross section. The
differential cross section, represented by dσ

dΩ , is defined as the number of particles scattered
into an element of solid angle dΩ in the direction given by θ, φ, per unit time, per unit
incident flux:

dσ
dΩ

�
1

Jinc

dN(θ, φ)
dΩ

, (35)

where Jinc is the incoming flux of particles. For a given state ψ(r) the flux density is defined
as

J �
i~
2m
(ψ∇ψ∗ − ψ∗∇ψ) (36)

Using the above definition, the magnitude of incoming flux density is given by

Jinc � |A|2
~k0
2m

, (37)

and the magnitude of scatterd flux density, in the direction θ, φ, is

Jscr � |A|2
~k

2mr2 | f (θ, φ)|
2. (38)

The number of particles scattered into a solid angle dΩ, and passing through an area
element dA � r2dΩ, per unit time, is given by

dN(θ, φ) � Jscr r2dΩ � |A|2 ~k2m
| f (θ, φ)|2dΩ. (39)

The differential cross-section then turns out to be

dσ
dΩ

�
1

Jinc

dN(θ, φ)
dΩ

�
k
k0
| f (θ, φ)|2. (40)
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Born approximation

Although we have obtained expressions for the scattering amplitude and the differential
scattering cross-section, we cannot calculate them yet, as f (θ, φ) involves the scattered
state ψ(r), which we do not know yet. We can make an approximation by replacing the state
ψ(r) in f (θ, φ) by the incoming state ψinc(r). This is called the first Born approximation.

ψ(r) ≈ ψinc(r) −
m

2π~2
e ikr

r

∫
e−ik·r′V(r′)ψinc(r′)dr′

� Ae ik0·r − m
2π~2

e ikr

r

∫
e i(k0−k)·r′V(r′)dr′. (41)

If the scattering is elastic, k � k0, although k , k0. Also, |k0−k | �
√

k2
0 + k2 − 2k0k cos θ �

2k sin(θ/2). The scattering amplitude and the differential cross section can now be written
as

f (θ, φ) � − m
2π~2

∫
e i(k0−k)·r′V(r′)dr′ (42)

and
dσ
dΩ

� | f (θ, φ)|2 �
m2

4π2~4

����∫ e i(k0−k)·r′V(r′)dr′
����2 (43)

In the 3-dimensional integral over r′, integrals over the angles can be carried out to get
reduced expressions for f (θ, φ) and dσ

dΩ .
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