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Introduction

The quantum hall e�ect is one of the most striking and sur-
prising developments to occur in physics in the last 20 years.
The integer quantum hall e�ect manifests itself as a series
of plateaus in hall resistance, RH of materials containing 2-D
electron systems. RH is precisely given by-

RH = h/je2 = (25812.81/j)Ω (1)

We imagine a conductor through which current I is �owing.
If it is not a superconductor, there is a voltage drop V along
the direction of the current �ow. But if we try to measure the
voltage perpendicular to the current �ow, no such voltage will
be observed. If a magnetic �eld B is applied perpendicular to
the current �ow, a voltage VH will be produced perpendicular
to the current �ow and the corresponding resistance is given by-

RH = VH/I (2)

This 'two dimensional' actually means three dimensional but is very thin of the order of around 100
A. The most common example of such a system is MOSFET and semiconductor hetrojunction The
important thing is that electrons can move freely in a 2-D plane but not in a perpendicular direction.

There are two fundamental ingredients for the understanding of the hall e�ect:

1. Landau quantization of states induced by the magnetic �eld on the 2-D electron motion. 2.
Localization

If we plot a graph between B and RH , it should come out to be a straight line (classically)

But if we have very thin conductor and at very low temperatures, at around T=50 mK,
it exhibits a series of plateaus.

Classically, 2D Classical Hall Formula is given by-

RH =
B

NSec
(3)

where NS is the concentration of charge carriers (number of carriers per unit area). One will notice
that the sign of RH depends on the sign of e, the charge of carriers. So, Hall e�ect also gives
information on whether the carriers are electrons or holes.



Experimentally, we see that hall resistance is quan-
tized at very low temperatures and at the plateau
region, it is given by

RH = h/fe2 (4)

where f = 1, 2, 3... This was discovered by Von
Klitzing and he got Nobel Prize for this discovery
in 1985.

2-D electrons in a magnetic �eld

Origin of Landau Levels

Let the electrons be con�ned to the x-y plane and
the magnetic �eld be parallel to the z-axis

The Hamiltonian for such a system is given by-

H =
(p + ieA/c)2

2m
=

[(px + eAx/c) + (py + eAy/c)]

2m
(5)

where A is the vector potential associated with the magnetic �eld B i.e., B = ∇×A. Under gauge
choice, we are free to choose A under which B remains unchanged. If we choose A = -yBî and
substitute into equation (5), we get-

H =
p2y
2m

+
(px − eyB/c)2

2m
(6)

Since the coordinate x doesnot appear in H and since we know the commutators [y,px] = [py,px]
= 0, it follows that [H,px] = 0. This means that px is a good quantum number and may be
regarded as a constant parameter. We de�ne k=px/h̄. The eigen functions of the problem must
now smultaneously satisfy:

pxψ(x, y) = h̄kψ(x, y) (7)

Hψ(x, y) = Eψ(x, y) (8)

Since the operator px is given by -ih̄∂/∂x, the �rst equation yields the desired result:

ψ(x, y) = eikxφ(y) (9)

The Quantum Hall E�ect has analogy to the one-dimensional simple harmonic oscillator. We can
see that the Schrodinger equation Hψ = Eψ reduces to the one dimensional problem:

Equation (8) is the schrodinger equation and its solutions determine the energy spectrum. We have

Hψ =
[(px − eyB/c)2 + py

2]eikxφ(y)

2m

=
eikx[(h̄k − eyB/c)2 + py

2]

2m

= eikx
[
e2B2

2mc2
(y − h̄kc/eB) +

p2y
2m

]
φ(y)

= eikx
[
mω2

c

2
(y − y0)2 +

p2y
2m

]
φ(y) (10)

2



where ωc = eB
mc

and y0 = h̄kc/eB. Here, ωc is known as the cyclotron frequency. The right hand
side must equal Eψ = Eeikxφ(y). thus the di�erential equation is obtained(after replacingpy by
-ih̄∂/∂y): [

−h̄2

2m

d2

dy2
+
mω2

c

2
(y − y0)2

]
φ(y) = Eφ(y) (11)

We begin by recalling the ordinary one dimensional Schrodinger equation for a simple harmonic
oscillator with frequency ω: [

−h̄2

2m

d2

dy2
+
mω2

c

2
z2

]
φ(z) = Eφ(z) (12)

where z is a dummy coordinate. Our problem looks very similar except we have a term (y − y0)2
instead of just y2. But this simply means that the center of the oscillations is at y = y0 rather than
at y = 0. As we can see by making the change of the variable z = y − y0. For any given y0, i.e.,
for every k our problem is exactly like that the corresponding 1D simple harmonic oscillator. Most
important, the energy levels for the two problems must be the same. From our knowledge of simple
harmonic oscillators, it should be no surprise that

En = (n+ 1/2)h̄ωc (13)

with n = 0,1,2...

This is a remarkable result. The allowed energy levels for a free 2D electron moving in a magnetic
�eld are identical to a �ctitious 1D simple harmonic oscillator. Note these levels are discrete; with
the magnetic �eld the electron's energy is a continuous variable.

Note also that the energy levels do not depend on the value of y0 or therefore k. The "momentum"
k in x direction creates no kinetic energy! Each value of n can have, apparently, any value of k and
thus the energy levels are highly degenerate.

Thus the magnetic �eld has induced a great condensation of the continuous energy spectrum of a
free particle in 2D into a discrete set of highly degenerate levels. these levels are known as Landau
levels, are equally spaced by the cyclotron energy, h̄ωc, which is itself proportional to the magnetic
�eld strength. The gaps between the levels are void of electronic states. For 3D electrons, no such
gaps occur.

Estimating Degeneracy

We have :

y0 =
h̄kc

eB
.

Along the x-axis, the electron behaves like a particle in a box, and its k values are given by k = 2πn
Lx

,
with n=0,1,2.....

y0 =
h̄2πnc

LxeB

Let y0max be the maximum value y0 can take, and correspondingly, N is the maximum value of n.

y0max =
h̄2πNc

LxeB
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So, N is the number states available in each Landau level. But the maximum value of y0 is Ly, the
physical dimension of sample (so that the electron stays within the sample):

LxLy =
h̄2πNc

eB

N

LxLy
=

eB

h̄2πc
=
eB

hc

But N/LxLy is the number of states per unit area, in a Landau level. Let us call that N0 =
degeneracy per unit area.

N0 =
eB

hc
=
B

φ0

where φ0 = hc/e

If exactly j Landau levels are completely �lled, the total number of of electrons per unit area should
be j×degeneracy per unit area:

Ns =
feB

h̄

Now, the Hall resistance is given by

RH =
B

NSec

=
Bhc

feBec

=
h

fe2
(14)

Impurities play a particularly important role in the ordinary electrical resistance of metals and semi-
conductors. Much of the energy dissipation that characterizes resistance occurs when the electrons
are scattered by collisions with impurity atoms or defects in the crystal lattice, Paradoxically, the
presence of impurities is what leads to the disappearance of electrical resistance and the plateaus in
Hall resistance that constitutes the quantized Hall e�ect.

In the presence of impurities, the many independent quantum states hat make up a given Landau
level are no longer precisely equal in energy. In a semi-classical explanation, one might say, for
example, that in certain of the quantum states, the electron is more likely to be found near an
impurity atom that has an excess of positive charge. Such states would be slightly stabler than
others in the same Landau level and would have a slightly lower energy. The single energy level that
makes up a given Landau level in a pure crystal is thus spread out, in the presence of impurities,
into a band made up of many distinct energy levels.

The various quantum states in each energy band can be divided into three general classes. The
states near the bottom of each band, that is those of lowest energy are each localized in small
region of sample. Near the top of each band, are the high energy localized states perhaps in the
region around impurity atoms that have acquired electrons and have excess of negative charge.

Near the center of each energy band, are the extended states which are spread out over a large
region of space.
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The localized and extended states are distinct because the electrons in the localized states cannot
move very far and cannot carry current.

According to the Pauli exclusion principle, one of the foundations of quantum mechanics, no two
electrons can occupy the same quantum-mechanical state. When the system is at its lowest possible
energy, then each of the quantum states contain exactly one electron and each state above that
level contains no electrons The energy of the highest �lled electron is known as the Fermi energy.

When there is a voltage di�erence between two edges of the sample, it is not actually possible to
de�ne a single Fermi energy for the entire plane of conduction electrons; the Fermi energies vary
from point to point. In each region of space, the states with energies below the local Fermi level
are occupied and above it are empty.

Suppose a current is �owing along a sample in a perpendicular magnetic �eld and the Fermi level
of the sample's electrons is in the sub-band of localized states near the top of some Landau band.
In this case all the extended states and the low energy localized states of the Landau band will be
completely �lled and some of the high energy localized states will be occupied as well. Now suppose
that the strength of the magnetic �eld is gradually increased and that at the same time, the current
is continuously adjusted in such a way that the Hall voltage between the sample's two edges remains
constant.

Many of the newly available states will be below the local Fermi
level and so electrons from higher energy occupied states will
drop down to �ll them; these electrons will in general come
from the high energy localized states that are near the Fermi
level. As these states are vacated the Fermi level-the energy of
the highest occupied level-descends to a lower position within
the Landau band. As long as the Fermi level remains in the
sub-band of high-energy localized states, all the extended states
within the Landau band remain fully occupied.

Because the number of independent quantum states per unit
area is directly proportional to the applied magnetic �eld, as
the magnetic �eld increases, the number of independent quan-
tum states per unit area is directly proportional to the applied
magnetic �eld, as the magnetic �eld increases, the number
of independent quantum states in each Landau level increases
proportionately:

N0 = eB/hc (15)

in every region of space, within the sample, additional quantum
states that have roughly the same energy as neighboring states
become available.

Because an electron trapped in a localized state cannot move
through the sample,the changing fraction of localized states that are �lled has no e�ect on the
sample's large scale electrical properties. The amount of current �owing in the sample therefore
remains constant as long as the sule-band of extended states is completely �lled : although the
increased magnetic �eld slows the forward motion of any current carrying electrons, this e�ect is
precisely cancelled by the increase, due to the newly created extended states, in the number of
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electrons available to carry current.

Since the Hall voltage is being held constant,the fact that the current does not change as the
magnetic �eld is varied implies that the Hall resistance also remains constant.

Whenever the Fermi level is in the sub-band of localized states, then, the Hall Resistance remains
the same even when the magnetic �eld is varied. This is the plateau in Hall resistance that is
characteristic of the quantized Hall e�ect. Eventually, as the strength of the magnetic �eld is
increased, the supply of electrons in the high-energy localized states will be exhausted and the Fermi
level must drop into the sub-band of extended states. As the Fermi level descends through the
sub-band of extended states, some of them are vacated. Because the current carrying sub-band is
then only partially occupied, the amount of the current �owing decreases and the Hall resistance
therefore increases. The Hall resistance continues to increase when the magnetic �eld is increased,
as long as the Fermi level remains in the sub-band of extended states.

If the magnetic �eld is increased further, eventually the extended states within the Landau band
will all be emptied and the Fermi level will once again enter a sub-band of localised states : the
low-energy localized states at the bottom of the landau band. If there is at least one full landau
band below the Fermi level, the extended staes in that band will be able to carry a current and
the Quantized Hall e�ect will once more be observed. Because the extended states of one landau
band have benn comletely emptied, however, the number of sub-bands of occupied states has been
reduced by one.

In this model, it is easy to understand why the ratio of Hall resistances at any two plateau should
equal a ratio of integers. The reason is that for any given Hall voltage. the current is directly
proportional to the number of occupied sub-bands of extended states and on each plateau, an
integral nuumber of such sub-bands is �lled.

If the magnetic �eld is increased still further, the Fermi level will move down through the regions
of localized states at the bottom of one Landau band and the high-energy localized states at the
bottom of one Landau band and into the high-energy localized states at the top of the next Landau
band. The Hall resistance will remain constant at its new plateau value until the Fermi level reaches
the region of extended states in the middle of this next Landau band.

Laughlin Wavefunction

An earlier attempt to explain the FQHE, the so-called quasi-particle hierarchy(QPH) approach,
started with the work af Laughlin, in which he proposed an ansatz wave function to describe the
correlated electron liquid at ν = 1/(2m + 1) = 1/3, 1/5, 1/7, ...., where m is an integer. It was
compared by Laughlin and others with the exact numerical ground-state wave function of few electron
systems and was found to be extremely accurate. Laughlin also constructed wave functions for the
quasi-particle excitations and made compelling arguments that there was a �nite gap, resulting in
FQHE with f = 1/(2m+ 1). The Laughlin wavfunction has the form:

φ1/(2p+1) =
∏
j<k

(zj − zk)2p+1 exp

[
−1

4

∑
l

|zl|2
]

To explain the other fractions, Haldane and Halperin proposed iterative hierarchical schemes, which
conjectured that "daughter" states occur when the quasi-particles of a "parent" state themselves
form a Lauhlin-like state. For example, 1/3 produced daughters at 2/5 and 2/7, which in turn
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generated 5/17, 3/11, 5/13, and 3/7, and so on. In this step-by-step manner, the QPH scheme
allows for FQHE at all odd-denominator fractions starting from f = 1/(2m+ 1).

The QPH approach was somewhat speculative and not entirely satisfactory. The fact that a good
description was available for f = 1/(2m + 1) but not for other fractions was puzzling; given the
qualitative similarity of the observations of various fractions , one would have thought that once the
origin of the FQHE was resolved, it should explain all fractions on a more or less equal footing. This
indicated that the physics of the Laughlin wave function was itself not fully understood. There were
several attempts to elucidate the relevant correlations in the Laughlin wave function. Girvin and
MacDonald related it, by a singular gauge transformation, to a boson wave function, which possessed
algebraic o�-diagonal long-range order. Zhang, Hansson, and Kivelson and Read proposed a mean
�eld theory in which the Laughlin wave function was viewed as a Bose condensate. These theories,
however, also did not shed any new light on the other fractions.

Composite Fermion Theory

One of the crucial steps of the composite fermion theory was to allow the use of higher LLs even in
the discussion of FQHE. The IQHE can be understood in term of the non-interacting electron. It
is ultimately a consequence of the quantisation of the single electron energy into the Landau levels,
which produces a non-degenerate amny particle ground state when an integer number of LLs are
occupied.

The FQHE cannot be explained in terms of non-interacting electrons since the ground state of
non-interacting electrons at a fractional �lling is highly degenerate.

One might expect a liquid of interacting electrons to behave in a very complex manner. It often
resembles a weakly interacting gas of particles di�erent from electrons which may be called the quasi
particles of the system.

In our case, the strongly correlated liquid of electrons is equivalent to a weakly interacting gas of
particles called composite fermion.

A composite fermion is an electron carrying an even number of vertex is de�ned so that an electron
aquires a phase of 2π upon traversing a closed loop around it.

The basic hypothesis of the composite fermion theory is that the electrons in the lowest landau
level avoid other most e�ciently by capturing an even number of vortices of the wave function and
transforming into composite fermions.

Composite fermions move in an e�ective magnetic �eld, because the phases generated by the vortices
partly cancel the Aharonov Bohen Phases originating from the external magnetic �eld.

Degeneracy of each Landau level per unit area is given by B/φ0 where φ0 = hc/e, quantum of
magnetic �ux. This implies that the number of occupied Landau levels, called �lling factor is given
by

ν = ρφ0/B,

where ρ = density of electron. The strongly interacting electron in a strong magnetic �eld transform
into weakly interacting composite fermions in a weaker magnetic �eld given by

B∗ = B − 2pρφ0 (16)
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We have
ν = ρφ0/B

Therefore
ν∗ = νφ0/B

∗

This gives

ν =
ν∗

2pν∗ ± 1

We start by considering interacting electron in a traverse magnetic �eld B. Now attach to each
electron an in�nitely thin, massless magnetic solenoid carrying 2p �ux quanta pointing antiparallel
to B, turning into a composite fermion. The additional magnetic �eld is given by −2pρφ0 giving
B∗ = B − 2pρφ0

An electron making a clockwise closed loop around a magnetic solenoid carrying �eld B acquires a
"Aharonov-Bohm" phase equal to 2πBA/φ0 where A = area of the loop

For composite fermion, it is
2πB∗A/φ0

How do vortices cancel part of external B?

Consider a path in which one particle executes a counter clockwise loop enclosing an area A, with
all other particles held �xed.

Also we have the phase−2π2pρA coming from 2pρA encircled vortices. Now equating the Aharonov-
Bohm phase 2πBA/φ0 and the phase −2π2pρA to an e�ective Aharonov-Bohm phase 2πB∗A/φ0,
we have

2πB∗A

φ0

=
2πBA

φ0

− 2π2pρA (17)

B∗ = B − 2pρφ0

The wave function of an non interacting composite fermions at ν∗, φν∗
CF is constructed simply by

taking the known wave functions of non interacting electrons at ν∗, φν∗ and attaching 2p vortices
to each electron.

φν∗
CF =

∏
j<k

(zj − zk)2pφν∗ (18)

where zj = xj + iyj denotes the position of the jth particle and multiplication by Jastrow factor
attaches 2p vortices to each electron and convert it into composite fermions.

Basic Concepts of the Composite Fermion Theory

The central achievement of the composite fermion theory is to identify the true particles of the
Landau level liquid. These are called composite fermions. These are electrons carrying an even
number(2p) of vortices of the many body wave function.

1. Electrons capture 2p vortices to become composite fermions.

2. Composite fermions are weakly interacting.
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3. The most remarkable outcome of formation of composite fermions is that as they move about,
the phases originating from vortices partly cancel the Aharonov Bohm phases due to an external
magnetic �eld.

Hence composite fermions experience much reduced e�ective magnetic �eld.

B∗ = B − 2pρφ0 (19)

Conclusion

The following picture has �nally emerged. First, the electrons form Landau because of the quan-
tisation of their kinetic energy. This results in IQHE. Within the lowest Landau level, electrons by
capturing vortices and transforming into fermions. Even though composite fermions are quantum
mechanical particles with a true manybody character, they may be treated for most purposes, as
ordinary non-interacting fermions moving in an e�ective magnetic �eld. They form quasi Landau
levels and execute cyclotron motion. The formation of composite fermions lies at the root of the
FQHE and several other fascinating experimental phenomena.
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