
Getting Started With Fortran 90

Tabish Qureshi

First Edition, August 2011

Center for Theoretical Physics
Jamia Millia Islamia
New Delhi - 110025.

CONTENTS Tabish Qureshi

Contents

1 Programming Languages and Fortran 2

2 Fortran Basics 3

3 Variables, types, and declarations 4

4 Expressions and assignment 5

5 Simple Input/Output 7

6 The if statements 8

7 Loops 8

8 Arrays and Matrices 10

9 Subprograms 12

10 Random numbers and Monte Carlo simulations 13

11 Some tit-bits 15

1

Tabish Qureshi

1 Programming Languages and Fortran

Programming Languages

We all know that computers are made of digital circuitary, where only two states are important, the high state,
and the low state. That makes it possible to simulate binary numbers, where any number can be represented by
a sequence of zeros and ones. High state of the digital circuits become 1, and low states 0. This way, a computer
can store numbers and calculate anything it is asked to. However, there is one downside to this - all numbers
and all instructions have to be supplied in the binary format, what we will loosely call, the machine language.
Human mind is not used to binary instructions, but that is the only language the computers understand.

So, the solution people came up with, is as follows. Create a language which is easy to understand for human
beings, what we will call, a high-level language. It is called high-level, because it doesn't go down to the level
of the computer. In order for the computer to understand the instructions (program) written in this language,
it has to be translated into the machine language, something which the computer understands. This process of
translation to the machine language is called compilation. A special program which does it, is called a compiler.
Once compiled, the computer understands the instructions written by human beings, and executes them.

There are several high-level programming languages, developed for speci�c purposes. C and C++ are general-
purpose programming languages, COBOL is for business related tasks, BASIC, Pascal are again general purpose
languages.

What is Fortran?

Fortran is a general purpose programming language, mainly intended for mathematical computations in science
applications (e.g. physics). Fortran is an acronym for FORmula TRANslation. Fortran was the �rst high-level
programming language. The work on Fortran started in the 1950's at IBM and there have been many versions
since. By convention, a Fortran version is denoted by the last two digits of the year the standard was proposed.
Thus we have Fortran 66, Fortran 77 and Fortran 90 (95). The most common Fortran version today is Fortran
90.

Users should be aware that most Fortran 90 compilers also allow Fortran 77, i.e. any Fortran 77 program is also
a valid program in Fortran 90.

Why learn Fortran?

The most natural reason to learn Fortran is that it is the easiest programming language, and well-suited for
scienti�c computation. Fortran is the dominant programming language used in scienti�c applications. It is
therefore important for physics (or engineering) students to be able to read and modify Fortran code. A major
advantage Fortran has is that it is standardized by ANSI (American National Standards Institute) and ISO
(International Standards Organization). As a resultm if your program is written in ANSI Fortran 77 or ANSI
Fortran 90, then it will run on any computer that has a Fortran 90 compiler. Thus, Fortran programs are portable
across computer platforms

From time to time, so-called experts predict that Fortran will die out and soon become extinct. However,
previous predictions of the downfall of Fortran have always been wrong. Fortran is the most enduring computer
programming language in history. So let us learn to program in Fortran.

2

Tabish Qureshi

2 Fortran Basics

A Fortran program is just a sequence of lines of text. The text has to follow a certain syntax to be a valid Fortran
program. We start by looking at a simple example where we calculate the area of a circle:

program circle

real r, area

c This program reads a real number r and prints

c the area of a circle with radius r.

write(*,*) 'Give radius r:'

read(*,*) r

area = 3.14159*r*r

write(*,*) 'Area = ', area

stop

end

The lines that begin with a "c" are comments and have no purpose other than to make the program more readable
for humans. We type the program in a �le called circle.f90, the �.f90� �le-extension being the convention in
Linux. Compiling and running the program in Linux typically looks like the following:

tabish@mutinao:~$ gfortran circle.f90

tabish@mutinao:~$./a.out

Give radius r:

3

Area = 28.274311

tabish@mutinao:~$

Program organization

A Fortran program generally consists of a main program and possibly several subprograms (or functions or
subroutines). For now we will assume all the statements are in the main program; subprograms will be treated
later. The structure of a main program is:

program name

non-executable statements (declarations)

statements

stop

end

All non-executable statements should come before the executable statements. In this tutorial, words that are in
italics should not be taken as literal text, but rather as a generic description. The stop statement is optional
and may seem super�uous since the program will stop when it reaches the end anyway but it is recommended to
always terminate a program with the stop statement to emphasize that the execution �ow stops there.

Column position rules

Fortran 77 is not a free-format language, but has a very strict set of rules for how the source code should be
formatted. The most important rules are the column position rules:

Col. 1 : Blank, or a "c" or "*" for comments

Col. 2-5 : Statement label (optional)

Col. 6 : Continuation of previous line (optional)
3

Tabish Qureshi

Col. 7-72 : Statements

Col. 73-80: Sequence number (optional, rarely used today)

Most lines in a Fortran 77 program starts with 6 blanks and ends before column 72, i.e. only the statement �eld
is used.
Fortran 90 allows free format, so you may ignore the above restrictions completely, if you name your �le some-
thing.f90 and are using gfortran, the GNU Fortran 90 compiler.

Apart from putting a �c� in the �rst column, there is another way of adding comments to your program. Any
text after an exclamation mark (!) is considered a comment. The exclamation mark may appear anywhere on
a line (except in positions 2-6). Comments may appear anywhere in the program. Well-written comments help
you read your program better at a later stage.

Continuation

Occasionally, a statement does not �t into one single line. One can then break the statement into two or more
lines, and use the continuation mark in position 6. Example:

c23456789 (This is a comment to just indicate column positions)

area = 3.14159265358979

& *r*r

Any character can be used instead of the plus sign as a continuation character. It is considered good programming
style to use either the plus sign, an ampersand, or numbers (2 for the second line, 3 for the third, and so on).

3 Variables, types, and declarations

Variable names

Variable names in Fortran consist of characters chosen from the letters a-z and the digits 0-9. The �rst character
must be a letter. (Note: Fortran 77 only allows variable names of length 1-6).

Types and declarations

Every variable should be de�ned in a declaration. This establishes the type of the variable. The most common
declarations are:

integer list of variables

real list of variables

double precision list of variables

complex list of variables

logical list of variables

character list of variables

The list of variables should consist of variable names separated by commas. Each variable should be declared
exactly once. If a variable is undeclared, Fortran 77 uses a set of implicit rules to establish the type. This means
all variables starting with the letters i-n are integers and all others are real. Most compilers still allow
these implicit rules, but you should not! If you do not consistently declare your variables, you in danger of making
errors which are hard to debug.

Integers and �oating point variables

Fortran has only one type for integer variables. Integers are usually stored as 32 bits (4 bytes) variables. Fortran
4

Tabish Qureshi

has two di�erent types for �oating point variables, called real and double precision. While real is often
adequate, some numerical calculations need very high precision and double precision should be used. Usually
a real is a 4 byte variable and the double precision is 8 bytes, but this is machine dependent. Some non-standard
Fortran versions use the syntax real*8 to denote 8 byte �oating point variables.

4 Expressions and assignment

Constants

The simplest form of an expression is a constant. There are 6 types of constants, corresponding to the 6 data
types. Here are some integer constants:

3

0

-105

+15

Then we have real constants:

3.0

-0.25

-2.7E6

3.73E-2

The E-notation will be clear from the following: -2.7E6 means −2.7× 106, and 3.33E-2 means 0.0373.

Assignment

The assignment has the form
variable_name = expression

or, for example

a = b

The above statement should not be read as a is equal to b. Rather, it should be interpreted as follows: Evaluate
the right hand side and assign the resulting value to the variable on the left. With this meaning, the following
two statements will make perfect sense

a = 5

a = a + 1

The variable a takes the value 5, and then 1 is added to that value, to make the value of a as 6. If you don't
take this interpretation, you will cancel a from both sides, and will get a nonsensical answer!

Expressions

The simplest expressions are of the form

operand operator operand

and an example is

x + y

The result of an expression is itself an operand, hence we can nest expressions together like

x + 2 * y
5

Tabish Qureshi

This raises the question of precedence: Does the last expression mean x + (2*y) or (x+2)*y? The precedence
of arithmetic operators in Fortran 77 are (from highest to lowest):

** {exponentiation} - x**3 means x3

*,/ {multiplication, division}

+,- {addition, subtraction}

All these operators are calculated left-to-right, except the exponentiation operator **, which has right-to-left
precedence. If you want to change the default evaluation order, you can use parentheses.

The above operators are all binary operators. there is also the unary operator - for negation, which takes
precedence over the others. Hence an expression like -x+y means what you would expect.

Extreme caution must be taken when using the division operator, which has a quite di�erent meaning for integers
and reals. If the operands are both integers, an integer division is performed, otherwise a real arithmetic division
is performed. For example, 3/2 equals 1, while 3./2. equals 1.5.

Built-in functions

There are many built-in functions in Fortran. Some of the most common are:

abs absolute value

min minimum value

max maximum value

sqrt square root

sin sine

cos cosine

tan tangent

atan arctangent

exp exponential (natural)

log logarithm (natural)

For example y = log(3.*x**2) will be a valid Fortran statement.

Logical expressions

Logical expressions can only have the value .TRUE. or .FALSE.. A logical expression can be formed by comparing
arithmetic expressions using the following relational operators:

Operator (Fortran 77) Fortran 90 Meaning

.LT. < less than (<)

.LE. <= less than or equal (≤)
.GT. > greater than (>)
.GE. >= greater than or equal (≥)
.EQ. == equal (=)
.NE. /= not equal (6=)

These operators are generally used inside a �conditional statement�. Logical expressions can be combined by the
logical operators .AND. .OR. .NOT. which have the obvious meaning.

Logical variables and assignment

Truth values can be stored in logical variables. The assignment is analogous to the arithmetic assignment.
Example:

6

Tabish Qureshi

logical a, b

a = .TRUE.

b = a .AND. 3 .LT. 5/2

The order of precedence is important, as the last example shows. The rule is that arithmetic expressions are
evaluated �rst, then relational operators, and �nally logical operators. Hence b will be assigned .FALSE. in the
example above.

Logical variables are seldom used in Fortran. But logical expressions are frequently used in conditional statements
like the if statement.

5 Simple Input/Output

An important part of any computer program is to handle input and output. For example, a program should be
able to read data from the keyboard, or from a �le. And it should be able to print the result to the computer
screen, or to a �le. In our examples so far, we have already used the two most common Fortran constructs for
this: read and write. Fortran I/O can be quite complicated, so we will only describe simple cases enough for
most purposes.

Read and write

Read is used for input, while write is used for output. A simple form is

read (unit no, format no) list-of-variables

write(unit no, format no) list-of-variables

The unit number can refer to either standard input, standard output, or a �le. This will be described in later
section. The format number refers to a label for a format statement, which you may not bother about, to start
with.

Example of I/O

integer m, n

real x, y

read(*,*) m, n

x = 1.0*(m+n)/(m*n)

y = 1.0*(m-n)/(m*n)

write(2,*) x, y

stop

end

It is possible to simplify these statements further by using asterisks (*)
for some arguments, like we have done in all our examples so far. This
is sometimes called list directed read/write.

read (*,*) list-of-variables

write(*,*) list-of-variables

The �rst statement will read values from the standard input and assign
the values to the variables in the variable list, while the second one writes
to the standard output, which is the screen in most cases.

In the example on the right, the program when run, will wait for the
user to give the values of m and n from the keyboard, either separated by
comma or by a space. The resulting values of x, y will be printed in a �le fort.2, a name which comes from
the value �2� of the unit-number. If we had used the value �10� instead of 2, the result would have been written
in a �le fort.10.

7

Tabish Qureshi

6 The if statements

Example of if statement

real x, r

r = 3.141592654

read(*,*) x, y

if (sqrt(x**2 + y**2) > r) then

write(*,*) 'yes'

else

write(*,*) 'no'

endif

stop

end

An important part of any programming language are the condi-

tional statements. The most common such statement in Fortran
is the if statement, which actually has several forms. The simplest
one is the logical if statement:

if (logical expression) executable statement

This has to be written on one line. This example �nds the absolute
value of x:

if (x < 0) x = -x

If more than one statement should be executed inside the if, then
the following syntax should be used:

if (logical expression) then

statements

endif

The most general form of the if statement has the following form:

Example of nested if statement

real x, y

read(*,*) x, y

if (x > 0) then

if (x >= y) then

write(*,*) 'x is +ve and x >= y'

else

write(*,*) 'x is +ve but x < y'

endif

elseif (x < 0) then

write(*,*) 'x is negative'

else

write(*,*) 'x is zero'

endif

stop

end

if (logical expression) then

statements

elseif (logical expression) then

statements

:

:

else

statements

endif

The execution �ow is from top to bottom. The condi-

tional expressions are evaluated in sequence until one is

found to be true. Then the associated code is executed
and the control jumps to the next statement after the
endif.

Nested if statements

if statements can be nested in several levels. To ensure
readability, it is important to use proper indentation. You
should avoid nesting many levels of if statements since
things get hard to follow.

7 Loops

For repeated execution of similar group of statements,
loops are used. If you are familiar with other program-
ming languages you have probably heard about for -loops,
while-loops, and until -loops. Fortran has one loop con-

8

Tabish Qureshi

struct, called the do-loop, which is most commonly used.
The do-loop corresponds to what is known as a for -loop
in other languages. Other loop constructs have to be
simulated using the if and goto statements.

do-loops

Factorial of a number using do loop

integer n, fac

read(*,*) n

fac = 1

do i = 1, n

fac = fac*i

enddo

write(*,*) n, '! is ', fac

stop

end

The do-loop is used for simple counting. Here is a simple example
that prints the cumulative sums of the integers from 1 through n
(assume n has been assigned a value elsewhere):

integer i, n, sum

sum = 0

do i = 1, n

sum = sum + i

write(*,*) 'i = ', i

write(*,*) 'sum = ', sum

enddo

The variable de�ned in the do-statement is incremented by 1 by
default. However, you can de�ne any other integer to be the step.
This program segment prints the even numbers between 1 and 10
in decreasing order:

integer i

do i = 10, 1, -2

write(*,*) 'i = ', i

enddo

The general form of the do loop is as follows:

do var = start, end, step

statements

enddo

In how many steps does a random-walker travel a dis-

tance 20

integer n, step, L, seed

L = 0

n = 0

read(*,*) seed ! +ve integer

call srand(seed) ! random no. setup

do while(.true.)

if (rand(0) > 0.5) then

step = +1

else

step = -1

endif

L = L + step

n = n + 1

if (iabs(L) == 20) exit

enddo

write(*,*) n, L

stop

end

var is the loop variable (often called the loop index) which
must be integer. start speci�es the initial value of var, end
is the terminating bound, and step is the increment. All the
three of these need not always be variables and constants,
they can also be expressions.

Note: The do-loop variable must never be changed by other
statements within the loop! This will cause great confusion.

do while loop

There is another kind of loop in Fortran 90, the do while

loop. The syntax of the loop is as follows

do while (logical expression)

executable statements

enddo

Here the executable statements will be continually repeated
in sequence, as long as the logical expression is true. This

9

Tabish Qureshi

can be used in situations where you want to continue repeat-
ing some procedure until a particular condition is satis�ed.
For example, the following program

integer i

i = 0

do while(i < n)

i = i + 1

write(*,*) 'i = ', i

enddo

stop

end

will work exactly like a do loop with do i=1,n.

8 Arrays and Matrices

There are many computational problems in which one needs
to use subscripted variables, like vectors and matrices. The
variable type (called data type) Fortran uses for representing such objects is called array. A one-dimensional
array is like a vector, while a two-dimensional can be thought of as a matrix. For example a 1-d array of size n
can store n numbers at a time, and a 2-d array of size m× n can store m× n numbers at a time. Like normal
variables, arrays are also real, integer, double precision, or even logical.

One-dimensional arrays

The simplest array is the one-dimensional array, which is just a linear sequence of numbers stored consecutively
in memory. All arrays, and their size, have to be declared in the beginning of the program. For example, the
declaration

real a(10)

declares a as a real array of length 10. By convention, Fortran arrays are indexed starting from 1. Thus the
�rst element of the array is denoted by a(1) and the last by a(10). However, you may de�ne an arbitrary index
range for your arrays using the following syntax:

Create a normalized random vector

real a(100), norm, scale

integer n

n = 100

a(1) = rand(1) ! initialize..

norm = 0.0

do i = 1, n

a(i) = rand(0)

norm = norm + a(i)*a(i)

enddo

scale = 1./sqrt(norm)

do i = 1, n

a(i) = scale*a(i)

enddo

stop

end

real b(0:9), gamma(-100:100)

Here, b is exactly similar to a from the previous example, except
the index runs from 0 through 9. gamma is an array of length 201.

Each element of an array can be thought of as a separate variable,
and can be used as such. You reference the i'th element of array
a by a(i). Here is a code segment that stores the 10 �rst square
numbers in the array sq:

integer i, sq(10)

do i = 1, 10

sq(i) = i**2

enddo

A common bug in Fortran programs is that the program tries to
access array elements that are out of bounds or unde�ned. This

10

Tabish Qureshi

is the responsibility of the programmer, and the Fortran compiler
will not detect any such bugs!

Matrices: 2-dimensional arrays

Multiplying two matrices

integer n, i, j, k

real a(3,3), b(3,3), c(3,3)

n = 3

read(*,*) a

read(*,*) b

do i = 1, n

do j = 1, n

c(i,j) = 0.0

do k = 1, n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

enddo

enddo

enddo

write(*,*) c

stop

end

Matrices are very important in linear algebra. Matrices
are usually represented by two-dimensional arrays. For
example, the declaration

real A(3,5)

de�nes a two-dimensional array of 3*5=15 real numbers.
It is useful to think of the �rst index as the row index,
and the second as the column index. Hence we get the
graphical picture:

A(1,1) A(1,2) A(1,3) A(1,4) A(1,5)

A(2,1) A(2,2) A(2,3) A(2,4) A(2,5)

A(3,1) A(3,2) A(3,3) A(3,4) A(3,5)

The row and column indices of matrices start from 1 by
default, but like 1-d arrays, they can also be de�ned to
start from 0 or a negative value. For example

integer spin(-10:10, -20:20)

is a valid 21× 41 matrix.

It is quite common in Fortran to declare arrays that are
larger than the matrix we want to store. This is perfectly
legal. Do not assume that all these elements of a de�ned
matrix are initialized to zero by the compiler (some compilers will do this, but not all). So, you have to initialize
all elements of an array to zero, if the program is such that it will try to use some elements before assigning
values to them.

There is an alternate way to declare arrays in Fortran. The statements

real A, x

dimension x(50), A(10,20)}

are equivalent to

real A(10,20), x(50)

This dimension statement is considered old-fashioned style today.

Multi-dimensional arrays

Fortran allows arrays of higher dimensions too. The syntax and storage format are analogous to the two-
dimensional case, so we will not spend time on this.

11

Tabish Qureshi

9 Subprograms

When a programs is more than a few hundred lines long, it gets hard to follow. Fortran codes that solve real
engineering problems often have tens of thousands of lines. The only way to handle such big codes, is to use a
modular approach and split the program into many separate smaller units called subprograms.

A subprogram is a (small) piece of code that solves a well de�ned subproblem. In a large program, one often
has to solve the same subproblems with many di�erent data. Instead of replicating code, these tasks should be
solved by subprograms . The same subprogram can be invoked many times with di�erent input data.

Fortran has two di�erent types of subprograms, called functions and subroutines.

Functions

Fortran functions are quite similar to mathematical functions: They both take a set of input arguments (param-
eters) and return a value of some type.

A simple example illustrates how to use a built-in function:

x = cos(pi/3.0)

Here cos is the cosine function, so x will be assigned the value 0.5 (if pi has been correctly de�ned; by the way,
a quick way to de�ne pi is pi = 355./113.).

In general, a function always has a type, i.e., real, integer. double precision etc. For example, if x is a double
precision variable, the previous example should read as

x = dcos(pi/3.0)

where dcos is the double-precision version of the cosine function.

Quite often one needs to de�ne one's own function, depending on the problem one is dealing with. For example,
if x and y are the coordinates of the position of a moving particle, one might need to know the distance of the
particle from the origin every now and then. Instead of typing the formula at every place, one can de�ne the
following function:

real function r(x,y)

real x, y

r = sqrt(x*x+y*y)

return

end

We see that the structure of a function closely resembles that of the main program. The main di�erences are:

1. Functions have a type. This type must also be declared in the calling program.

2. The return value should be stored in a variable with the same name as the function.

3. Functions are terminated by the return statement instead of stop.

To sum up, the general syntax of a Fortran function is:

type function name (list-of-variables)

declarations

statements

return

end
12

Tabish Qureshi

The function has to be declared with the correct type in the calling program unit. The function is then called by
simply using the function name and listing the parameters in parenthesis.

Important notes
1. Variables used inside a function remain inside, including the variables that take values passed by the main
program - the main program does'nt know about those variables.
2. Vice-versa also holds true. For example, if pi has been de�ned in the main program, a function cannot use
it. Either it is rede�ned inside the function, or the main program passes it to the function through one of the
arguments of the function.
3. A function can be called by just giving constants, instead of variables. For example the function r(x,y)

described above, could be called from the main program by the statement dist = r(3.2, 7.5).
4. A function can call another function from inside.

Subroutines

A Fortran function can essentially only return one value. Often we want to return two or more values (or
sometimes none!). For this purpose we use the subroutine construct. The syntax is as follows:

subroutine name (list-of-arguments)

declarations

statements

return

end

Note that subroutines have no type and consequently should not (cannot) be declared in the calling program
unit. We give an example of a very simple subroutine. The purpose of the subroutine is to swap two integers.

subroutine swap (a, b)

integer a, b, tmp

tmp = a

a = b

b = tmp

return

end

Note that, unlike the case of function, the variables passed from the main program, are not local. Their values
will be passed back to the main program. You have to be careful about this when writing Fortran code, because it
is easy to introduce undesired side e�ects. For example, sometimes you may mistakenly treat an input parameter
in a subprogram as a local variable and change its value. You should never do this since the new value will then
propagate back to the calling program with an unexpected value!

10 Random numbers and Monte Carlo simulations

Very often in computer programs, we need to simulate a coin-toss, or throw of a dice. For this, we need random
number. For example, if we had a function which randomly returned either value +1 or -1, we could take it as
an ideal coin-toss. Unfortunately, it turns out that computers cannot generate true random numbers. What they
can generate from various complicated algorithms, are pseudorandom number, i.e., numbers which appear to be

random. Most Fortran compilers have a built-in function which returns a random value, uniformly distributed in
the interval [0,1), i.e. including 0, but not 1. In GNU Fortran 90 compiler, this function is called rand().

In order to generate a random number, the function should be called with an argument 0, for example
x = rand(0)

13

Tabish Qureshi

assigns a random value to x. However, in order to use the random number e�ectively, it has to be initialized with
an integer seed number. In GNU Fortran 90 compiler, the seeding is done by calling the subroutine srand(seed),
once before starting the calls to rand(0). As you can guess, srand stands for seed random number generator.

One can look at the example program for a random-walker, in order to understand the use of rand(0).

Note: If you rerun the program with the same seed, it will generate exactly the same sequence of random
numbers! In order to generate a new sequence everytime, you should use a di�erent value of the integer seed
evertime.

Some people use a clever method of generating a new set of random numbers on every run, by using the built-in
function secnds(x), which returns the number of seconds (minus x) since midnight. This value is assigned to
the seed.

The random number generator function only gives numbers in the interval [0,1). Sometimes we want random
numbers in a di�erent interval, e.g. [-1,1). A simple transformation can be used to change intervals. For example,
if we want a random number (x) in the interval [a,b) we can do so using:

x=(b-a)*rand(0)-a

Thus for the interval [-1,1) we get: x=2*rand(0)-1.

In fact, we can take our set of numbers from the rand(0) function which have a uniform probability distribution
in the interval [0,1) and turn them into a set of numbers that look like they come from just about any probability
distribution with any interval that one can imagine!

A few examples:

dice=int(1+6*rand(0)) ! This generates the roll of a 6 sided die.

g=sqrt(-2*log(rand(0)))*cos(2*pi*rand(0))

This generates a random number g from a gaussian distribution with mean=0 and variance=1. We assume that
pi is already initialized to 3.14159 in the program.

t= -a*log(rand(0))

This generates a random number from an exponential distribution with a decay time = a.

Flipping a spin with a probability

integer S(100,100)

:

prob = exp(-DelE/kT)

if (rand(0) < prob) then

S(i,j) = -S(i,j)

endif

:

:

stop

end

Being able to transform the random numbers obtained from
ran(seed) into any probability distribution function we want is ex-
tremely useful and forms the basis of all computer simulations.

Monte-Carlo simulation

In some types of computer simulation, one sometimes wants to
do a particular operation with a probability. For example, in the
simulation of Ising Model in physics, one may want to ��ip� a
spin with some probability. The way to do that is illustrated in the
program on the right. The probability with which one wants to �ip
a spin, is calculated with the formula prob = exp(-DelE/kT).
Then a random number is generated and compared with prob.
One can see that if prob = 1, then the random number will always
be less than it, and the spin will be �ipped with probability 1. If
prob = 0.5, 50% of the time the random number will be greater than 0.5, and 50% of the time it will be less
than that. So, spin will be �ipped with probability 0.5.

14

Tabish Qureshi

This type of simulation often goes by the name �Monte Carlo�. Why Monte Carlo? In the pre-computer
era a popular way to obtain a set of random numbers was to use a roulette wheel, just the type found in the
Mediterranean city of Monte Carlo, famous for its gambling casino.

11 Some tit-bits

The parameter statement

Some constants appear many times in a program. It is then often desirable to de�ne them only once, in the
beginning of the program. This is what the parameter statement is for. It also makes programs more readable.
Moreover, if you are de�ning the dimensions of many arrays in the main program, you cannot use a variable for
that:

n = 100

real a(n,n), b(n,n), c(n,n), vec(n) ! This is WRONG

:

This is wrong because n = 100 is an executable statement and the declaration of arrays is a non-executable
statement, which should come before any executable statement. The right way to do it is

parameter(n=100, pi=3.14159)

real a(n,n), b(n,n), c(n,n), vec(n) ! This is correct

:

Remember that the"variable" de�ned in the parameter statement is not a variable but rather a constant whose
value can never change.

The exit and cycle statements

The exit statement can be used to come out of a loop, if a condition is satis�ed. See the random-walker
example.

The cycle statement can be used to skip the rest of the statements in a loop cycle, and go to the next value
of the loop index.

The continue and goto statements

goto and continue statements

:

if (abs(a) < epsil) goto 15

:

:

15 continue

:

:

The continue statement does absolutely nothing. It is mostly
used to specify a location in a program, together with a statement
label, like
10 continue

One may occasionally want to use the goto statement to break
the �ow of the program, and make it go to a particular location,
speci�ed by a labelled continue statement.

The use of goto statement is considered a very clumsy program-
ming practice, and should be avoided. It makes the logic of the
program hard to follow.

Reading input from �les, writing output to �les

Although normally the reading/writing of �les is handled via the open and close statements in Fortran, there is
a quick and dirty way to do it without those statements.

15

Tabish Qureshi

If you are satis�ed that running a program is generating the right data in the output, you can use the following
trick (in Linux) to redirect the out to a data �le. The following way of running the program

./a.out > energy.dat

will redirect the output of the program, which was supposed to be displayed on the screen, to the �le energy.dat.
Same way, sometimes you want some data to be read from a �le, instead of giving it from the keyboard, like a
3× 3 matrix. This can be done by a command like this

./a.out < matrix.dat

Editing, compiling and running Fortran 90 programs

Although Fortran programs can be written in any text editor (not a word-processor!), it is better to do it in an
editor which is made for programming. One example of such an editor is geany. Install geany in Linux, and
use it to type your program. Once you have saved the �le with the extension .f90, it knows that it is a Fortran
program and will color various Fortran statements to make it more readable (this is called syntax-highlighting).
You can also compile and run your programs from inside geany.

Normally programs are compiled using the command

gfortran myprog.f90

which generates an executable �le a.out, which can be executed by the command

./a.out

However, you can generate an executable �le by another name, e.g.

gfortran myprog.f90 -o myprog

which will generate an executable �le myprog, which can then be executed.

16

	Programming Languages and Fortran
	Fortran Basics
	Variables, types, and declarations
	Expressions and assignment
	Simple Input/Output
	The if statements
	Loops
	Arrays and Matrices
	Subprograms
	Random numbers and Monte Carlo simulations
	 Some tit-bits

