
Introdutory CosmologyM. Sami1 Homogeneous and Isotropi ModelHomogenity: Means that universe looks the same at eah point.Isotropy: Means that universe looks the same in all diretions.These are two important properties of spae whih are independent of eah other.But isotropy ateah point implies homogenity also.Cosmologial priniple: Universe is homogeneous and isotropi at any given osmi time. Theosmologial priniple is supported by the observational evidene that the universe beomes smoothat large sales. The osmologial priniple presents the idealized piture of the universe. Thedeparture from homogenity and isotropy is extremely important whih led to the struture formationin the universe.1.1 Hubble's law
r

0

We examine the motion of matter in a oordinate system in whihit is at rest at the origin. We now ask for the veloity dstributiononsistent with homgenity and isotropy.Hubbles law:
~v = H(t)~r (1)Veloity �eld (1) is isotropi at O. Let us verify that (1) holds forany observer situated at a point A, The observer at A is in motionwith respet to O.

~r′ = ~r − ~rA.So,
~v′ = ~v − ~vA = H~r −H~rA

~v′ = H(~r − ~rA)

~v′ = H~r′

0

r

rA

A
r’

Therefore, veloity distribution (1) is homogeneous and isotropi.1.2 Loal expansionThe distane between two arbitrary points hanges as
d~rAB(t)

dt
= H(t)~rAB 1



Therefore,
~rAB(t) = ~rAB(t0) exp

(
∫ t

t0

H(t′)dt′
)Remark: The dynamis will be deided by H(t).If H(t) = const., then

~rAB(t) = ~rAB(t0)e
(t−t0)H1.3 Evolution of density

R(t)
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dtBut dR/dt = v = HR. Therefore,
dρ(t)
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H = −3ρH

dρ

dt
= −3ρH (2)(2) an also be obtained from ontinuity equation

∂ρ

∂t
= −~∇ · (ρ~v)

ρ - funtion of time alone:
∂ρ

∂t
= ρH ~∇ · ~r = −3ρH (3)

∂ρ

∂t
=

d

dt
ρHomogeneity and isotropy is a preserved property in time.2 Evolution Equation

R(t)
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The aeleration of a partile with mass m due to the gravitationalfore of M is given by:
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dH

dt
= −H2

−
4π

3
Gρ (4)Remark: If H = const, eqn (4) is inonsistent. Infat H = const (with dh

dt
= R̈

R
− H2) wouldimply R̈(t) > 0, whih annot ome from eqn (4).Friedman Equation: Multiply eqn (3) by dR(t)/dt:
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= A = const (5)
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πρR3Determining the onstant A{t0, ρ0 } present epoh and selet a value of R = R0 at t = t0 for the sphere.
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] (6)This is alled Freidman equation. From ontinuity equation
ρ(t) =

ρ0R
3
0

R32.1 General harater of the solution of (6)At present, dR
dt

> 0 implies that R was smaller in the past, but 8πG
3
ρR2 was larger, so dR

dt
was largerin the past:

R(t0) = 0,
dR

dt

∣
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∣
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t=t0

= +∞ t = t0Explanation 3



R ≥ 0 by de�nition, R̈(t) < 0, ρ > 0Hene R(t) was smaller and smaller as we go into past deeper and deeper, and dR/dt beomeslarger and larger. Consequently, there was an epoh, say t = 0, when
R(t = 0) = R(0) = 0

dR

dt

∣

∣

∣

∣

t=0

= ∞

R(t)

t 0 t0

Critial density: The predition of the future depends upon the sign of [ρ0 − 3H0/8πG] or howthe present density ompares with the ritial density ρc:
ρc =

3H2
0

8πGWe also de�ned the dimensionless density parameter Ω0:
Ω0 ≡

ρ0
ρ

=
8πGρ0
3H2

02.2 Classi�ation of the solutionI ρ0 > ρc The seond term in eqn (6) is positive. As R inreases, the �rst term dereases andeventually beomes equal to the seond term at a partiular time. The RHS of eqn (6) thenvanishes and expansion eases, and ontration begins.II ρ0 < ρc RHS of equation (6) is positive, leading to expansion forever.As t → ∞, R → ∞

dR

dt

∣

∣

∣

∣

t=∞

=

[

8πG

3
R2

0(ρc − ρ)

]1/2III ρ0 = ρc Expansion ontinues without bound.2.3 Maximum Age Estimate
ρ > ρ

ρ < ρ

ρ = ρ

o c

o

o c

c

t max

R(t)

t = 0, R = 0. Suppose the expansion rate is onstant and given bythe present value of Hubble parameter,
R(t0) ≡ R0 =

(

dR

dt

)

t=0

t0 = H0R0t0

t0 =
1

H0
T0 ≃ h−19.8× 109years

H0 ≃ 100kms−1mpc−1 h ≃ 1− 0.5 t ≃ 9.8× 109h−1years

0.37 < H0t0 < 1.47
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3 Solutions of Evolution Equation
ρ0 = ρc or Ω0 = 1
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dRR1/2 = const.dt
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2/3
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6πGt23.1 Pressure orretions: Relativisti e�ets
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3
R2ρ = A (9)Consisteny hek: Di�erentiating (9), we get
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Ṙ = HR
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ρṘR = 0

R̈

R
+

4πG

3

(

ρ+
P

c2

)

−
8πG

3
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)System (7), (8) and (9) are onsistent. 5



3.2 Solution of Equations in Case of Radiation DominationEquation of State: Out of the eqs (7), (8) and (9), only two are independtent. Eq. (9) an beobtained from (7) and (8). These eqs an be solved and ρ(t), R(t) an be uniquely determinedprovided the equation of state (= relation between ρ and P ) is given. This relation, in simple ases,an be written as
P = ωρc2, ω =







0 Dust
1
3

Radiation
−1 Cosmological constant

ω = 1
3
, ρ0 = ρc

∂ρ
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ρ(t) = ρ0
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3
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1

R(t)

R(t) = R0

(

t
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)1/2

H(t) =
1

2t
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1

2H0

ρ(t) =
3

32πG

1

t24 Standard Form of Evolution EquationsComoving Coordinates: These oordinates are are arried along with the expansion. Sine theexpansion is uniform, the relation between the Physial and Comoving Coordinates is given by
~r(t) = a(t)~x a(t) → scale factorThe uniformity of expansion is enoded in the sale fator.
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Let Kc2 = A
x2 or K = A

x2c2
. Dimensionally
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(ρ+ 3P )4.1 Thermal HistoryFor K = 0, ρr(t) = 3

32πGt2

ρr(t) = αT 4
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(

3

32πGα

)1/4
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TK = 1.5× 1010t−1/2
sec

ρr(t) ∝
1

a4
⇒ T (a) = T0

(a0
a

)4.2 DeouplingDeoupling takes plae at a temperature equal to the binding energy of Hydrogen atom.
3kBTd = 13.6eV

Td =
13.6eV

3kB
≈ 5× 104K (1eV ≃ 104K)However, temperature in reality is muh smaller than this

Td ≃ 3000K ⇒
a0
ad

=
3000

T0
≃ 10007



Sine TK = 1.5× 1010T−1/2, deoupling time
td = 1013 sec ≃ 3× 105 yrs.Remark:
Ωr

Ωm
∝

1

a

=
Ω0

r

Ω0
m

1

a
≈

4× 10−5

Ω0
m

1

a

aeq ≃ 2.4× 104Ω0

teq ≃ 2.5× 103Ω
−3/2
0 years5 Cosmologial ConstantEinstein introdued the osmologial onstant to make the universe stati (later desribed by himas his �biggest blunder�).
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