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Lecture 3.4
Green’s Functions

§ 1

Superposition Principle

The static electric field due to a charge density ρ(r) is
governed by the Poisson eqution

∇2E = − ρ
ε0

This equation is linear in E. If the charge density can be
written as a sum (or superposition) of two densities ρ(r) =
ρ1(r) + ρ2(r) with electric fields E1 and E2 respectively then
using

∇2E1 = −ρ1(r)

ε0
, and ∇2E2 = −ρ2(r)

ε0

we can infer that

∇2(E1 + E2) = −ρ1(r) + ρ2(r)

ε0
.

This shows that the field solution for a sum of charge distri-
butions can be obtained by simply adding the solutions for
individual distributions.

We can continue the process of dividing the charge dis-
tributions indefinitely till the limit of point charges. A point
charge density is given by a Dirac delta function. Therefore
if we can solve the problem of the field of a point charge, we
can solve it for any other charge distribution.
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The solutions of linear partial differential equations (PDE)
of this kind where the “right hand side” of the equation cor-
responding to the source of the field is a delta function are
called Green’s functions or fundamental solutions.

§ 2

Three dimensional Dirac-delta

First we define the three-dimensional Dirac delta function
δ3(r) as

δ3(r) = δ(x)δ(y)δ(z)

=

(
1

(2π)

∫
eikxx dkx

)
(similar integral for ky) (for kz)

=
1

(2π)3

∫
eik.r d3k

The function has value zero at all points except the origin
r = 0, and is such that for any smooth function φ of r, the
integral ∫

d3rδ(r)φ(r) = φ(0)

In particular we can write (choosing for φ a smooth function
which is equal to unity around the origin)∫

V
d3rδ(r) = 1

where V is a region including the origin. The integral is zero
when the region V excludes the origin r = 0. This shows,
for example, that qδ(r) represents a charge density of a point
particle located at the origin with charge q.
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§ 3

Green’s function for the Poisson Equation

The method of Green’s function involves solving the equa-
tion

∇2G(r− r′) = δ3(r− r′)

Suppose we are able to solve this equation. Then the solution
to our original Poisson equation can be written as

Φ(r) = − 1

ε0

∫
d3r′G(r− r′)ρ(r′)

because

∇2
∫
d3r′G(r− r′)ρ(r′) =

∫
d3r′∇2G(r− r′)ρ(r′)

=
∫
d3r′δ3(r− r′)ρ(r′)

= ρ(r)

Before the calculation of the Green’s function we give the
answer and verify that it actually is the solution. The solution
is

∇2
(
− 1

4πr

)
= δ3(r)

and you should commit it to memory. This is a very important
formula.

By expressing ∇2 in polar coordinates

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
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we see that ∇2(1/r) = 0 for any r 6= 0. Therefore we must
check ∫

V
d3r∇2

(
− 1

4πr

)
= 1

when the volume V includes the origin.

Let us take the region V to be a sphere of radius a centered
at the origin. Then using the Gauss theorem∫

V
d3r∇.

[
∇
(
− 1

4πr

)]
= − 1

4π

∫
S
∇
(

1

r

)
.n dS

where n is the unit radial vector on spherical surface S. Using
the fact that at the boundary S of V where r = a 6= 0,

∇
(

1

r

)
= − r

r3
= − n

r2
= − n

a2

we get

1

4πa2

∫
S

n.n dS =
1

4πa2

∫
S
dS = 1

which proves the result.

§ 4

Calculation of the Green’s Function

The green’s functions are solutions of PDE’s which involve
generalized function like the Dirac delta. Therefore they are
generalized functions themselves.

Normally, one begins the calculation of Green’s function
by assuming a Fourier transform

G(r) =
1

(2π)3

∫
d3k

∼
G (k) eik.r
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Then, applying ∇2

∇2G(r) =
1

(2π)3

∫
d3k (−k2)

∼
G (k) eik.r

and equating it to the fourier expansion of the delta function

δ(r) =
1

(2π)3

∫
d3k eik.r

we get

∼
G (k) = − 1

k2

So the Greens function is

G(r) =
−1

(2π)3

∫
d3k

1

k2
eik.r

provided we can integrate the right hand side. But we cannot.
The right hand side is singular because of the 1/k2 factor.

By a method which should, by now, be familiar to you,
we re-interpret the integral by introducing a small positive
number ε and equating it as the limit ε→ 0 of

Gε(r) ≡ −1

(2π)3

∫
d3k

1

k2 + ε2
eik.r

There are a number of ‘tricks’ used at this stage :

1. The integral on the right hand side in independent of
what directions are chosen for the axes in the k-space.
For the fixed value of r we chose the direction of kz
axis along r. Then calling the polar coordinates in the
k-space by k, θ, φ we get k.r = kr cos θ,

2. Integrating φ gives a factor of 2π.
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3. Calling cos θ = u

Gε(r) =
−1

(2π)2

∫ ∞
0

k2 dk
∫ 1

−1
du

eikru

k2 + ε2

=
−1

ir(2π)2

∫ ∞
0

k dk
eikr − e−ikr

k2 + ε2

=
−1

ir(2π)2

∫ ∞
−∞

k dk
eikr

k2 + ε2

where the two integrals in k over half range (0,∞) are
combined into a single integral over (−∞,+∞).

4. The integral over k can be interpreted as a complex k-
integration along a closed contour running along the real
axis from −∞ to ∞ and along an infinite semicircle in
the upper half plane. Why upper half plane? Because
on this part of the contour the integrand is zero :
exp(i(k + iη)r) = exp(−ηr + ikr) → 0 for large η. (In
the lower half plane a similar contour will spell disaster
: the integrand blows up exponentially!)

5. There is one pole in the upper half plane, at k = iε,

k
eikr

k2 + ε2
=
eikr

2

[
1

k + iε
+

1

k − iε

]
and the “residue theorem” of complex integration gives

Gε(r) =
−1

ir(2π)2

∫ ∞
−∞

k dk
eikr

k2 + ε2

=
−1

ir(2π)2
(2πi)

e−εr

2

= −e
−εr

4πr
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Remark 1 The result given above is itself of great importance.
We have not used the smallness of ε anywhere. Thus the Green’s
function Gmof the “static Klein-Gordon equation”

(∇2 −m2)G(r) = δ(r)

is

Gm(r) = −e
−mr

4πr
.

It is called the “Yukawa potential”.

The Green’s function for the Poisson equation is, finally,

G(r) = lim
ε→0

Gε(r)

= lim
ε→0
−e
−εr

4πr

= − 1

4πr

§ 5

Green’s function for the Helmholtz equation

The Helmholtz equation is

(∇2 + κ2)φ = source term, κ = a real number.

Its Green’s function satisfies

(∇2 + κ2)G(r) = δ(r)

The Fourier transform
∼
G (k) of G(r) is

G(r) =
1

(2π)3

∫
d3k

∼
G (k) eik.r
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where

∼
G= − 1

|k|2 − κ2

The integral is problematic because the integrand is singular
at k = |k| = ±κ.

G(r) = − 1

(2π)3

∫
d3k

1

k2 − κ2
eik.r

We trace the same steps as before : as far as possible.

1. Choose the ‘z-axis’ in k-space along r so that k.r =
kr cos θ.

2. d3r = k2dkd(cos θ)dφ with ranges k = (0,∞), cos θ =
(−1, 1), φ = (0, 2π).

3. dφ integration gives a factor of 2π.

4. d(cos θ) integration of exp(ikr cos θ) gives

1

ikr
(eikr − e−ikr)

5. Combine the two exponentials (with k = 0,∞) into a
single integral of exp(ikr) running from −∞ to ∞.

Thus we have

G(r) = − 1

4irπ2

∫ ∞
−∞

eikrkdk

k2 − κ2

= − 1

8irπ2

(∫ ∞
−∞

eikrdk

k − κ
+
∫ ∞
−∞

eikrdk

k + κ

)

Again, we encounter a function defined through a singular
integral. The cure is to redefine the integral as a generalized
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function with an infinitesimal parameter ε so that the original
function is obtained in the limit of ε→ 0.

The two integrals can be redefined by changing κ→ κ±iε.

G±(r) = − 1

8irπ2

(∫ ∞
−∞

eikrdk

k − κ∓ iε
+
∫ ∞
−∞

eikrdk

k + κ± iε

)
As r > 0, the integral can only be “closed in the uhp” (upper
half plane of k) because then the contribution of the semi-
circular contour is zero and the real line integral from −∞
to ∞ can be converted into a contour integral. The pole in
the upper half plane for G+ is at k = κ + iε integral can be
calculated by residue theorem :

G+(r) = − 1

8irπ2
(2πi)eiκr = −e

iκr

4πr
.

Similarly, for G− the pole falling in uhp is at −κ + iε and
contributes

G−(r) = −e
−iκr

4πr
.

These two solutions G± are called the “outgoing” and “in-
coming” wave solutions.

Remark 2 Why is there one solution of the Poisson equation
and two for the Helmholtz? Actually, for any inhomogeneous equa-
tion the general solution is always of the form

general solution = a particular solution of the inhomogeneous
equation
+ a general solution of the homogeneous equation.

We can think of either G+ or G− as the particular solution,
then the other one is obtained by adding a solution of the homo-
geneous solution to it. For example,

G− = G+ + (G− −G+),
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and the difference G− −G+ satisfies the homogeneous equation.

§ 6

Green’s function for the Wave equation

Helmholtz equation simplifies the derivation of the Green’s
function for the wave equation. The wave equation is(

∇2 − 1

c2
∂2

∂t2

)
φ = source term,

and its Green’s function G(t, r) satisfies(
∇2 − 1

c2
∂2

∂t2

)
G = δ3(r)δ(t).

Assume the Fourier transform of four variables,

G(r, t) =
1

(2π)4

∫
d3k

∫
dω

∼
G (k, ω) eik.r−iωt.

The minus sign in the Fourier exponential for time variable t
is conventional.

(It has a deep reason though. That has something to do
with the structure of space-time being Minkowski and not
Euclidean. Or, with the energy of a physical system being
bounded from below while there is no such restriction on the
momenta. Or, with why in quantum mechanics the energy is
ih̄∂/∂t but momenta are −ih̄∇. But we do not go into that
here because that is irrelevant. If it makes you feel better,
you can substitute −ω for ω everywhere with absolutely no
change in anything but the notation.)

We solve this problem in two steps. First, we define the
intermediate Green’s function

g(r, ω) =
1

(2π)3

∫
d3k

∼
G (k, ω) eik.r.
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The Green’s function is thus determined by,

G(r, t) =
1

(2π)

∫
dω g(r, ω) e−iωt,

and the function g satisfies the Helmholts equation(
∇2 +

ω2

c2

)
g(r, ω) ≡

(
∇2 + κ2

)
g(r, ω) = δ(r)

where ω = κc. The tw0 solutions for the Helmholtz equations
are

g± = −e
±iκr

4πr
,

which gives

G±(r, t) =
1

(2π)

∫
dω g±(r, ω) e−iωt

= − 1

4πr

1

(2π)

∫
dω e±iκr−iωt

= − 1

4πr

1

(2π)

∫
dω e±iωr/c−iωt

= − 1

4πr
δ
(
t∓ r

c

)

§ 7

Green’s function for the heat equation

[Not really required for the Electrodynamics course.]
In this case we have a function on both r and t.

The equation to be solved is

∂G(r, t)

∂t
= D∇2G(r, t) + δ3(r)δ(t)
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We introduce the fourier transform of G(r, t) with re-
spect to r :

G(r, t) =
1

(2π)3

∫
d3k G̃(k, t) eik.r

and write the delta function δ3(r) by its usual formula

δ(r) =
1

(2π)3

∫
d3k eik.r

we find after substituting in the heat equation and
comparing both sides

∂G̃(k, t)

∂t
= −Dk2G̃(k, t) + δ(t)

which can be solved as follows :

Consider the equation(
d

dt
+ a

)
F = δ(t)

We already know that θ′(t) = δ(t). Therfore we try a solution of
the type F (t) = θ(t)f(t) where f is an normal unknown function.
Substituting we get

δ(t)f(t) + θ(t)f ′(t) + aθ(t)f(t) = δ(t)f(0) + θ(t)f ′(t) + aθ(t)f(t) = δ(t)

This implies that f(0) = 1 and f ′(t) = −af(t) for t > 0. Therefore
the solution is

F (t) = θ(t)e−at

Coming back :

G̃(k, t) = θ(t) exp[−Dk2t]

therefore

G(r, t) =
θ(t)

(2π)3

∫
d3k exp[−Dk2t] eik.r
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We can perform the three dimensional integral on k
by noting that there are actually three independent
gaussian integrals∫
d3k exp[−Dk2t] eik.r =

∫
dkx exp[−Dk2xt+ ikxx]

∫
dky exp[−Dk2yt+ ikyy]

×
∫
dkz exp[−Dk2zt+ ikzz]

The first integral gives for example∫
dkx exp[−Dk2xt+ ikxx] =

√
π

Dt
exp[−x2/(4Dt)]

and similarly for the other two factors.

The result is

G(r, t) =
θ(t)

(2
√
πDt)3

exp[−r2/(4Dt)]
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