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Lecture 3.3
Generalized Functions

§ 1

Generalised functions

The standard definition of a function f is as follows. A
function f is a mapping from the set R of real numbers (or a
suitable interval of it) into the real numbers, so that it assigns
a number f(x), called its value, to x ∈ R.

Consider the “step function” θ defined as follows :

θ(x) = 0 x < 0
θ(x) = 1 x > 0

This is very much like an ordinary function, in fact a constant
function, everywhere except the point x = 0 where it is not
defined. The function is discontinuous at x = 0 and we can
not define its derivative at that point.

The theory of generalised functions is a genralization of
the concept of functions to include functions which may have
discontinuities or singularities at some or other point of their
domain of definition.

For this purpose we must look at an alternative way to
define a function.

There are three different ways to define generalized func-
tions.
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1. A generalized function is defined by a sequence of ordi-
nary functions which “tend towards” the singular func-
tion.

2. A generalized function defined indirectly when integral
of its product with a smooth well behaved functions is
given.

3. A generalized function is defined as boundary value of
an analytic function.

All three methods are used and they complement each
other.

§ 2

Sequence of functions

The best exampole is the Dirac delta function. The sequence
of functions is chosen as

δ(x) = lim
n→∞

fn(x) =
n√
π
e−n

2x2 , n = 1, 2, . . . (1)

By choosing ε = 1/n2 we can also write the above definition
as

δ(x) = lim
ε→0

fn(x) =
1√
επ
e−x

2/ε, n = 1, 2, . . . (2)

These functions looks like
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The “area under the curve” of fn is
∫∞
−∞ fn(x)dx = 1 (check

that). And for larger values of n the functions become nar-
rowly and sharply peaked around x = 0 always keeping the
area under the curve equal to 1.

The Dirac delta function is the limiting function of this
sequence. In the limit the function would be zero everywhere
except at x = 0 where it would be +∞.

The above sequence is not the only sequence of functions
which defines the Dirac delta. There are several (in fact in-
finitely many) such sequences. Another example of a sequence
of functions is obtained by

δ(x) = lim
ε→0

1

π

ε

x2 + ε2

If you really must insist on a sequence, you can take ε = 1/n
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which is equivalent to ε→ 0 as n→∞. This gives

δ(x) = lim
n→∞

gn(x) =
n

π

1

1 + n2x2
, n = 1, 2, . . .

These functions also have unit area under the curve and for
large values of n the functions become very sharply peaked
and narrow near x = 0.

Actually it does not matter which particular sequence is
used for the definition.

The step function can be approximated by a sequence of
functions

θ(x) = lim
n→∞

hn(x) =
1

2
+

1

2
tanh(nx)

The function tanh(nx) looks like

For large values of n the function becomes more and more
steep at origin and for most of the positive side it is practically
equal to 1 and on the negative side it is −1. Another sequence
is

θ(x) = lim
n→∞

kn(x) =
1

2
+

1

π
tan−1(nx) n = 1, 2, . . .

where it is understood that we take the values of tan−1(x) in
the range −π/2 to π/2. The function tan−1(x) also has graph
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like tanh(x), and suitable factor has been used to give the
step function.

A third interesting example is the “Cauchy principal value”
of 1/x. This function is obtained by omitting the singular part
of 1/x in a symmetrical way from the neighbourhood of x = 0.
Let ε be a small number, then we define the Caucy principal
value denoted by

P
(

1

x

)
as the limit ε→ 0 of the function

P
(

1

x

)
=

1

x
(|x| > ε)

= 0 (|x| < ε)

Again we encounter the discontinuities. We can define the
Cauchy principal value by a sequence of functions

P
(

1

x

)
= lim

ε→0

x

x2 + ε2
= lim

n→∞

n2x

1 + n2x2
(ε =

1

n
)

You must plot these functions. The idea is that for |x| > ε
the function behaves like 1/x and near x = 0 it is linear with
a large slope (n2). The turning point from 1/x to x behaviour
is at x = ε = 1/n.

We are already in a position to prove an important relation
:

lim
ε→0

1

x± iε
= P

(
1

x

)
∓ iπδ(x)

The left hand side is a a complex fuction with a small imagi-
nary part

1

x± iε
=

x

x2 + ε2
∓ i ε

x2 + ε2
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When ε → 0 the first term on the right hand side becomes
the Cauchy principal value, and the second term gives Dirac
delta function by the definition given above. Therefore (as
ε→ 0)

1

x± iε
= P

(
1

x

)
∓ iπδ(x)

There is another intresting fact we can derive. If a se-
quence fn of functions tends to a generalized function f then
we say that the sequence f ′n of derivatives of the functions
defines the derivative f ′ of the generalized function. You
can check that the derivative of the step function is the Dirac
delta function :

θ′(x) = δ(x)

(Hint : use tan−1 definition for the step function.)

§ 3

Generalized functions defined via test functions

The method of indirect definition of a generalized function
is somewhat like the way police obtains information on hard
criminals through its informers who are themselves better be-
haved but happen to be in the company of the those wanted
men.

In this method the effect of the generalized function is
seen when “it is smeared with a test function”. This means
we integrate the generalized function to be defined with a
known well behaved “test” function φ and give the value of
the integral

(f, φ) ≡
∫ +∞

−∞
f(x)φ(x)dx
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The class D of test functions should be sufficiently large so
that a knowledge of (f, φ) for all φ ∈ D is enough to extract
all relevant knowledge of the generalized function f .

The class of functions D is taken to be the set of all func-
tions which are infinitely differentiable and which vanish out-
side a finite interval.

[Example and remark about the difference between ana-
lytic real and analytic complex functions.]

It is hoped that for functions with a singularity, the process
of integrating with a very well behaved and smooth function
φ will give meaningful result (f, φ), even though it may not
be possible to define the function at all points by the usual
definition.

For example, for our step function, the definition as a gen-
eralized function is

(θ, φ) =
∫ +∞

0
φ(x)dx

which is obvious in this simple case.

And the Dirac delta function is defined by

(δ, φ) = φ(0)

This indirect method for generalized function can be em-
ployed to define derivatives of a generalized function which
are again generalised functions.

If there was an ordinary function f(x) we would write
f ′ = df/dx :

(f ′, φ) =
∫ +∞

−∞
f ′(x)φ(x)dx
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= [fφ]+∞−∞ −
∫ +∞

−∞
f(x)φ′(x)dx

= −(f, φ′)

the first term being zero because every φ vanishes at ±∞.

We use the same relation to define the derivative f ′ of a
generalised function f .

Definition : (f ′, φ) = −(f, φ′)

As an example we can define the derivative of the step function
θ as

(θ′, φ) = −(θ, φ′) = −
∫ +∞

0
φ′(x)dx = −[φ(x)]∞0 = φ(0)

Therefore θ′ is a generalised function identical to Dirac delta
function.

What is more δ, being a generalised function itself, has its
own derivative defined

(δ′, φ) = −(δ, φ′) = −φ′(0)

Thus generalised functions have derivatives of all orders de-
fined – which is very good progress considering that it was
not possible to differentiate them even once by by the usual
definition.

§ 4

Fourier Transform of δ

We shall prove a very important formula, which can be written
as

δ(x) =
1

2π

∫ +∞

−∞
eikx dk

8



As things stand in this formula the integral on the right hand
side is not well defined. This formula is very useful but sym-
bolic. One way is to define it as the limit of convergent inte-
grals

δ(x) = lim
ε→0

δε(x)

≡ lim
ε→0

1

2π

∫ +∞

−∞
eikx−εk

2

dk

The integral can be done explicitly by “completing the square”

−εk2 + ikx = −ε
(
k2 − ikx

ε

)

= −ε
[(
k − ix

2ε

)2

−
(
ix

2ε

)2
]

= −εK2 − x2

4ε

where K = k − ikx/(2ε). The integration variable can be
changed from k to K and the integral evaluated

δε(x) =
1

2π

∫ +∞

−∞
eikx−εk

2

dk

=
e−x

2/4ε

2π

∫ +∞

−∞
e−εK

2

dK

=
e−x

2/4ε

2
√
πε

which gives us the delta function as ε→ 0.
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