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Lecture 3.2 : Maxwell’s Equations

Was it a God who wrote these lines ...?

Ludwig Boltzmann
(Vorlesungen uber Maxwells Theorie der Electrizitat und des Lichtes,Vol

II, Munchen, 1893)

§ 1

The Basic Fields E and B

Electric and magnetic fields are two facets of the same field
called electromagnetic field (em-field for short). The em-field
is created by charge and current densities (ρ and j respec-
tively). They are governed by Maxwell’s equations :

∇ · E =
ρ

ε0
, (Gauss’ Law) (1)

∇ ·B = 0, (2)

∇× E = −∂B
∂t
, (Faraday’s Law) (3)

c2∇×B =
j

ε0
+
∂E

∂t
. (4)

These equations are supposed to determine E and B which
are six quantities dependent on spacetime. These are eight
equations (two scalar and two vector equations). Are these
over-determined?

§ 2

Conservation of charge
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Surely, the maxwell’s equations do not hold for any arbitrary
independent values of ρ and j. Taking the dot product with
∇ in the last of the Maxwell equations the left hand side is
zero because ∇.(∇× (any vector) = 0 and the right hand side
is

1

ε0
∇ · j +

∂

∂t
(∇ · E)

If we substitute from the first of the equations we get the
continuity equation

∂ρ

∂t
+∇ · j = 0 (5)

which simply tells us that in a volume V with its surface S
the depletion of charge per unit tine is accounted for by flow
of charge from the surface :∫

S
j.n̂da =

∫
V
∇ · jdv = − ∂

∂t

∫
V
ρdv

§ 3

Poincare Lemmas

We know that A is any vector field then

∇ · (∇×A) = 0.

What is intersting is that, the converse is also true, at least
in a ‘small region’. If we find that for some vector field B

∇.B = 0

then B must be of the form ∇×A in a neighborhood.

Similarly, we know that ∇ × (∇ψ) is always zero. The
Poincare lemma for this case says that if for some vector field
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C it is true that ∇×C = 0 then in a small region there exists
a scalar function φ such that we can express C = ∇φ.

These lemmas are very useful. The ‘small region’ or neigh-
borhood is very often the whole space in simple cases which
we deal with. The exceptions will be discussed separately.

§ 4

Potentials

Two of the Maxwell equations do not involve any charge or
current. They are

∇ ·B = 0, and ∇× E = −∂B
∂t

Using the Poincare lemmas we can first write

B = ∇×A.

This vector field is called vector potential or sometimes
magnetic vector potential. Once B is so determined, we can
put it in the Faraday’s law

∇×
(
E +

∂A

∂t

)
= 0 (6)

where the Poincare lemma can be used again and we write

E +
∂A

∂t
= −∇φ.

The field φ is called the scalar potential. The negative
sign is traditional and has the same origin as the mechanical
equation ‘force = - gradient of potential’.
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§ 5

Gauge freedom

Electromagnetic fields do not determine the potentials com-
pletely. If magnetic induction B is given to us then vector
potential A and A′ ≡ A+∇Ψ give the same field B because
∇×∇Ψ = 0. The electric field is

E = −∇φ− ∂A

∂t
= −∇φ− ∂A′

∂t
+
∂

∂t
∇Ψ

therfore if we choose a new scalar potential φ′ = φ − ∂Ψ/∂t
then even the electric field does not change :

E = −∇φ′ − ∂A′

∂t

The transformation

A→ A +∇Ψ, φ→ φ− ∂Ψ/∂t

is called a gauge transformation and the scalar function Ψ
which governs the gauge transformation as the gauge func-
tion.

§ 6

Gauge Fixing

It is simpler to work with potentials rather than em-fields E
and B because in place of the two vector fields we can deal
with only one vector field A and one scalar field φ. Moreover,
we can forget about two of the Maxwell equations because
they are automatically satisfied.
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In terms of the potentials, the remaining Maxwell equa-
tions look like

∇2φ+
∂

∂t
∇ ·A = − ρ

ε0

c2∇(∇ ·A)− c2∇2A =
j

ε0
−∇

(
∂φ

∂t

)
− ∂2A

∂t2

which can be rearranged as

∇2φ = − ρ
ε0
− ∂

∂t
∇ ·A, (7)(

∇2 − 1

c2
∂2

∂t2

)
A = − j

ε0c2
+∇

(
∇ ·A +

1

c2
∂φ

∂t

)
. (8)

The non-uniqueness of potentials is not a big problem. We
can restrict the freedom in the choice of potentials by impos-
ing restrictions of our own on the potentials. Such restrictions
may ‘fix’ the potentials wholly or partly. We can also choose
the condition on potentials conveniently to simplify our equa-
tions.

Out of the infinitely many ways of gauge fixing there are
two popular choices.

1. We impose

∇ ·A +
1

c2
∂φ

∂t
= 0. (9)

This choice is called the Lorentz gauge and the Maxwell
equations become(

∇2 − 1

c2
∂2

∂t2

)
φ = − ρ

ε0
, (10)(

∇2 − 1

c2
∂2

∂t2

)
A = − j

ε0c2
. (11)
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2. We require

∇ ·A = 0, (12)

and this choice is called the Coulomb gauge. In this
case the Maxwell equations look like

∇2φ = − ρ
ε0

(13)(
∇2 − 1

c2
∂2

∂t2

)
A = − j

ε0c2
+

1

c2
∇∂φ
∂t

(14)
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